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Juncheng Wan, jorgenwan@gamil.com

This is a note of John. Lee’s Introduction to Smooth Manifolds, GTM 218. Differential Manifolds is a
course I did not take at university. For taking the course Lie Group and Lie Algebra, I audited Differential
Manifolds, while I found that Introduction to Smooth Manifolds is more readable than taking a course.
Thus, I read this book. In this note, I mainly record the basic concepts, main theorems, and my thoughts
and solutions for the problems and exercises in this book.

Pre-requisites of this note include a knowledge of the basic concepts of general topology, multivariate
calculus, ordinary differential equation, partial differential equation.
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1 Smooth Manifolds

1.1 Concepts

Definition (Topological Manifold (with Boundary)). M is topological manifold of dimension n if it has the
following properties:

1. M is a Hausdorff space;

2. M is second-countable;

3. M is locally homeomorphic to an open subset of Rn (or Hn).

Definition (Coordinate Chart). Let M be a topological n-manifold. A coordinate chart on M is a pair

(U,φ), where U is an open subset of M and φ : U → Û is a homeomorphism from U to an open subset

Û ∈ Rn.

Definition (Smooth Atlas). A collection of coordinate charts whose domains cover topological n-manifold
M is called an atlas. An atlas A is called a smooth atlas if any two charts in A are smoothly compatible
with each other.

Definition (Smooth Structure). A smooth structure on a topological n-manifold M is a maximal smooth
atlas.

Definition (Smooth Manifold (with Boundary)). A smooth manifold is a pair (M,A ), where M is a
topological manifold (with boundary) and A is a smooth structure on M .

1.2 Problems

Problem (1-1). Let X be the set of all points (x, y) ∈ R2 such that y = ±1, and let M be the quotient of X
by the equivalence relation generated by (x,−1) ∼ (x, 1) for all x ̸= 0. Show that M is locally Euclidean and
second-countable, but not Hausdorff. (This space is called the line with two origins.)

Solution (1-1). It is obvious that M is second-countable with basis of R2 intersected with M as M ’s basis.
It is locally homeomorphic to R1. It is not Hausdorff, because (0,−1) and (0, 1) can not be seperated.

Problem (1-2). Show that a disjoint union of uncountably many copies of R is locally Euclidean and Haus-
dorff, but not second-countable.

Solution (1-2). Let M =
⋃
i∈I Ri, where I is the uncountable index set and each Ri is a copy of R1. The

open sets of M is the union of the open sets of Ri. Thus, M is locally homeomorphic to R and Hausdorff.
(The disjoint union of Hausdorff spaces is also Hausdorff.) However, there are uncountable number of basis
forM . (A manifold should have countably many components, which is a natural result of the second-countable
condition.)

Problem (1-3). A topological space is said to be σ-compact if it can be expressed as a union of countably
many compact subspaces. Show that a locally Euclidean Hausdorff space is a topological manifold if and only
if it is σ-compact.

Solution (1-3). Assume M is a locally Euclidean Hausdorff space.
“=⇒”. By the definition of manifold, we only need to show that M is second-countable. Let M =

⋃
i∈I Ci,

where I is a countable index set and each Ci is a compact set. As Ci compact, each Ci is the union of finitely
many open sets. Thus, M is a union of countably many open sets, which making it second-countable.
“⇐=”. If M is second-countable, M =

⋃
i∈I Bi =

⋃
i B̄i, where I is a countable index set and Bi is the open

ball. As each B̄i is a compact set, M is σ-compact naturally.
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Problem (1-4). Let M be a topological manifold, and let U be an open cover of M .
(a) Assuming that each set in U intersects only finitely many others, show that U is locally finite.
(b) Give an example to show that the converse to (a) may be false.
(c) Now assume that the sets in U are precompact in M , and prove the converse: if U is locally finite, then
each set in U intersects only finitely many others.

Solution (1-4).
(a) For each p ∈ M , we have p ∈ U ∈ U , where U is some open set. As the neighborhood U of p intersects
finitely many others, U is locally finite.
(b) If for each p ∈ M , p intersects finitely many sets in U . I can not find a converse to (a). There is one
counterexample provided by others, where M = R and U = {R}

⋃
{(i− 0.5, i+ 1.5) : i ∈ Z}.

(c) Let U ∈ U be an open set in M . As M is a topological manifold, Ū is covered by countably many open
sets (just choose basis) of M . Name Ū ⊂

⋃
Vi. Without loss of generality, we may assume each open set Vi

is the neighborhood of some point p ∈ U that intersects finitely in U . Name them Vij ∈ U for each Vi. As U
is precompact, the closure of U is compact. Thus, we have finitely many {Vi} to cover Ū . Thus, U at most
intersects

⋃
{Vij}, which is finite by finite in U .

Problem (1-5). Suppose M is a locally Euclidean Hausdorff space. Show that M is second-countable if and
only if it is paracompact and has countably many connected components. [Hint: assuming M is paracompact,
show that each component of M has a locally finite cover by precompact coordinate domains, and extract from
this a countable subcover.]

Solution (1-5).
“=⇒”. If M is second-countable, it is a manifold. Thus, M is paracompact and has countably many con-
nected components.
A topological basis is a subset B of a set T in which all other open sets can be written as unions or finite
intersections of B.
“⇐=”. A topological basis is a subset in which all other open sets can be written as unions or finite intersec-
tions of it. Assume N is some connected component of M . We only need to show that N is second-countable.
For any open set U ⊂ N , there is a refinement UU of {U,N −U}, which is locally finite. And UU is at most
countable, because we can use the property of Hausdorff to construct the open set step by step. Gather those
countable open sets in UU for each U (which is also at most countable by the property of Hausdorff). Then,
we get countably many basis for N .

Note that, the construction in another proof is also interesting.

Problem (1-6). LetM be a nonempty topological manifold of dimension n ≥ 1. IfM has a smooth structure,
show that it has uncountably many distinct ones. [Hint: first show that for any s > 0, Fs(x) = |x|s−1x defines
a homeomorphism from Bn to itself, which is a diffeomorphism if and only if s = 1.]

Solution (1-6). Let (U, ϕ) be a smooth structure of M and for any s > 0, Fs(x) = |x|s−1x defines a
homeomorphism from Bn to itself. As ϕ(U) is homeomorphic to Rn and Rn is homeomorphic to Bn, with
loss of generality, we assume that ϕ(U) = Bn. Thus, (U,Fs ◦ ϕ) is also a smooth structure of M . As s has
uncountably many distinct one, there are uncountably many distinct smooth structure of M .

Note that, the construction is not right. The right one is in the answer.

Problem (1-7). Let N denote the north pole (0, . . . , 0, 1) ∈ Sn ⊆ Rn+1, and let S denote the south pole
(0, . . . , 0,−1). Define the stereographic projection σ : Sn\{N} → Rn by

σ
(
x1, . . . , xn+1

)
=

(
x1, . . . , xn

)
1− xn+1

Let σ̃(x) = −σ(−x) for x ∈ Sn\{S}.
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(a) For any x ∈ Sn\{N}, show that σ(x) = u, where (u, 0) is the point where the line through N and x
intersects the linear subspace where xn+1 = 0 (Fig. 1.13). Similarly, show that σ̃(x) is the point where the
line through S and x intersects the same subspace. (For this reason, σ̃ is called stereographic projection from
the south pole.)

(b) Show that σ is bijective, and

σ−1
(
u1, . . . , un

)
=

(
2u1, . . . , 2un, |u|2 − 1

)
|u|2 + 1

(c) Compute the transition map σ̃ ◦σ−1 and verify that the atlas consisting of the two charts (Sn\{N}, σ)
and (Sn\{S}, σ̃) defines a smooth structure on Sn. (The coordinates defined by σ or σ̃ are called stereographic
coordinates.)

(d) Show that this smooth structure is the same as the one defined in Example 1.31. (Used on pp. 201,
269, 301, 345, 347, 450.)

Solution (1-7).

(a) Let x1

y1 = · · · = xn

yn = xn+1−1
yn+1−1 = t, and xn+1 = 0. Then we get the result. For σ̃(x), it is the same.

(b) For (0, · · · , 0, 1) and (y1, · · · , yn, 0), we have their parameterized point in the line, (ty1, · · · , tyn, 1 − t).
If the point is on Sn, we get t = 2

1+|y|2 . Thus, we get the inverse of σ.

For (c) and (d), the proof is trivial.

Solution (1-8).
First, we prove the if and only if part.
”=⇒”. Assume θ is an angle function: S1 → R. Because eiθ(z) = z, we get that θ is injective. As θ is
continuous and S1 is connected and compact, Im(θ) should also be connected and compact in R, which we
take it to be [a, b]. Thus, S1 is homeomorphic to [a, b] (injective, surjective, and continuous map). However,
it is obvious that these two space is not homeomorphic as their fundamental group is different. Thus, we get
a contradiction.
”⇐=”. If U ⫋ S1, let θ̃ be the common ”angle function” with θ̃(1, 0) = 0, θ̃(0, 1) = 0.5π, etc. We can take

θ = θ̃|U . Second, the smoothness of θ = θ̃|U is ovbious.

Solution (1-9). CPn is homeomorphic to Sn in Cn+1, by mapping each ray to a point in the sphere. Thus,
it is a topological 2n-manifold. The smooth structure is the reverse of the mapping composed with the smooth
structure of Sn.

Note that I do not what I was saying, which is totally wrong!

Solution (1-10). The main idea is to construct the basis of S. As S intersects with Q trivially, the projection
map π|P (S) is isomorphic to S. There exists bi ∈ Q, such that ei + bi ∈ S, for 1 ≤ i ≤ k. Gathering these
bi as columns, we get matrix B. The uniqueness is easily proved.

Solution (1-11). The proof of boundary point and interior point is obvious. The standard smooth structure
on Bn is the identity map on each open set. The problem is to construct a smooth structure on the boundary
that is also compatible with interior smooth structure. The intuition is to map each Ui = {(x1, · · · , xn), xi >
0}
⋂
B̄n to Vi = {(x1, · · · , xn), xi < 0}

⋂
Bn.

Solution (1-12). Let M be a smooth m-manifold and N a smooth n-manifold with boundary. We prove that
M ×N a smooth (m+n)-manifold with boundary M ×∂N . First, M ×N is Hausdorff and second-countable
because M and N are. Second, ∂(M ×N) = M × ∂N because (x, y) ∈ ∂(M ×N) must have the form that
y ∈ ∂N .

6



Note that there is classification of smooth 1-manifold (with boundary), which is illustrated in https://

www.math.tecnico.ulisboa.pt/~ggranja/TD/08/classif1manifs.pdf. Any smooth 1-manifold without
boundary is diffeomorphic to R or S1.
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2 Smooth Maps

2.1 Concepts

Definition (Smooth Function). Suppose M is a smooth n-manifold, k is a nonnegative integer, and f :
M → Rk is any function. f is a smooth function if for every p ∈ M , there exists a smooth chart (U,φ)
for M whose domain contains p and such that the composite function f ◦ φ−1 is smooth on the open subset
φ(U) ⊂ Rn.

Definition (Smooth Map). SupposeM is a smooth m-manifold, N is a smooth n-manifold, and F :M → N
is any map. F is a smooth map if for every p ∈M , there exists a smooth chart (U,φ) for M whose domain
contains p and a smooth chart (V, ψ) for N whose domain contains F (p), such that the composite function
ψ ◦ F ◦ φ−1 is smooth on the open subset φ(U) ⊂ Rm.

Definition (Diffeomorphism). IfM and N are smooth manifolds with or without boundary, a diffeomorphism
from M to N is a smooth bijective map F :M → N that has a smooth inverse.

Definition (Partition of Unity). Suppose M is a topological space, and let X = (Xα)α∈A be an arbitrary
open cover of M , indexed by a set A. A partition of unity subordinate to X is an indexed family (ψα)α∈A
of continuous functions ψα :M → R with the following properties:

1. 0 ≤ ψα(x) ≤ 1 for all α ∈ A and all x ∈M .

2. suppψα ⊆ Xα for each α ∈ A.

3. The family of supports (suppψα)α∈A is locally finite, meaning that every point has a neighborhood that
intersects supp ψα for only finitely many values of α.

4.
∑
α∈A ψα(x) = 1 for all x ∈M .

Definition (Bump Function). If M is a topological space, A ⊆M is a closed subset, and U ⊆M is an open
subset containing A, a continuous function ψ : M → R is called a bump function for A supported in U if
0 ≤ ψ ≤ 1 on M , ψ ≡ 1 on A, and suppψ ⊆ U .

Definition (Exhaustion Function). IfM is a topological space, an exhaustion function forM is a continuous
function f : M → R with the property that the set f−1((−∞, c]) (called a sublevel set of f ) is compact for
each c ∈ R.

2.2 Problems

Problem (2-1). Define f : R → R by

f(x) =

{
1, x ≥ 0

0, x < 0

Show that for every x ∈ R, there are smooth coordinate charts (U,φ) containing x and (V, ψ) containing
f(x) such that ψ ◦ f ◦ φ−1 is smooth as a map from φ

(
U ∩ f−1(V )

)
to ψ(V ), but f is not smooth in the

sense we have defined in this chapter.
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Solution (2-1). As f is smooth away from x = 0, we only think about the chart of (U, ϕ) where 0 ∈ U . Define
(V, ψ): V = (1− ϵ, 1 + ϵ), ψ(x) = x and U = (−ϵ, ϵ), ϕ(x) = x, which are smooth coordinate charts. Then,
we have ϕ(U

⋂
f−1(V )) = ϕ([0, ϵ)) = [0, ϵ). Thus, ψ ◦ fϕ−1(x) = x in ϕ(U

⋂
f−1(V )), which is smooth.

As f is not continuous, it is not smooth in the sense we have defined in this chapter. The main difference
between the definition of f (with (U, ϕ) and (V, ψ)) and the definition of smooth map in this chapter, is that
the latter one requires that f(U) ⊂ V .

2-2. Prove Proposition 2.12 (smoothness of maps into product manifolds).

Problem (2-3). For each of the following maps between spheres, compute sufficiently many coordinate
representations to prove that it is smooth.
(a) pn : S1 → S1 is the nth power map for n ∈ Z, given in complex notation by pn(z) = zn.
(b) α : Sn → Sn is the antipodal map α(x) = −x.
(c) F : S3 → S2 is given by F (w, z) = (zw̄ + wz̄, iwz̄ − izw̄, zz̄ − ww̄), where we think of S3 as the subset{
(w, z) : |w|2 + |z|2 = 1

}
of C2.

Solution (2-3). The main computation in this problem is to take the coordinate representations (Ui, ϕi) of
each map F , compute ϕj ◦F ◦ϕi, and show that is a smooth function. For general Sn, we have stereographic
chart. For S1 ∈ C, we have angle coordinate chart, where the map sends eix to x.

Problem (2-4). Show that the inclusion map Bn ↪→ Rn is smooth when Bn is regarded as a smooth manifold
with boundary.

Solution (2-4). First, we give B̄n a smooth structure {(B, Id)}
⋃
{(U±

i , ϕ
±
i ) : i ∈ [n]}, where U+

i =
x ∈ Rn : xi > 0, ϕ+i : U+

i → B−
i and U−

i = x ∈ Rn : xi < 0, ϕ−i : U−
i → B+

i , as defined in Problem
1-11. Then, the smoothness of the inclusion map is a straightforward calculation.

Problem (2-5). Let R be the real line with its standard smooth structure, and let R̃ denote the same
topological manifold with the smooth structure defined in Example 1.23. Let f : R → R be a function
that is smooth in the usual sense.
(a) Show that f is also smooth as a map from R to R̃.
(b) Show that f is smooth as a map from R̃ to R if and only if f (n)(0) = 0 whenever n is not an integral
multiple of 3 .

Solution (2-5). In Example 1.23, the smooth structure is (R, ϕ(x) = x3).
(a) ϕ ◦ f ◦ Id−1(x) = f3(x) is smooth.

(b) Id◦f◦ϕ−1(x) = f(x
1
3 ). Consider the Taylor series of f , the existence of which is guranteed by smoothness.

In my view, f(x
1
3 ) is smooth if and only if f (n)(0) = 0 whenever n is not an integral multiple of 3.

Problem (2-6). Let P : Rn+1\{0} → Rk+1\{0} be a smooth function, and suppose that for some d ∈
Z, P (λx) = λdP (x) for all λ ∈ R\{0} and x ∈ Rn+1\{0}. (Such a function is said to be homogeneous of

degree d.) Show that the map P̃ : RPn → RPk defined by P̃ ([x]) = [P (x)] is well defined and smooth.

Solution (2-6). For x = λy, P̃ ([x]) = P̃ ([λy]) = [P (λy)] = [λdP (y)] = [P (y)] = P̃ ([y]). Thus, P̃ ([x]) =

[P (x)] is well defined. Apply the smooth structure of RPn and RPk, we get the smoothness of P̃ .

Problem (2-7). Let M be a nonempty smooth n-manifold with or without boundary, and suppose n ≥ 1.
Show that the vector space C∞(M) is infinite-dimensional. [Hint: show that if f1, . . . , fk are elements of
C∞(M) with nonempty disjoint supports, then they are linearly independent.]

Solution (2-7). As n ≥ 1, there is a nonempty open set U of M (we can choose one basis). For any given
kZ+, choose k disjoint points pi, 1 ≤ k ≤ k from U and get k open set Ui such that pi ∈ Ui and Ui are
disjoint from each other (the existence is guranteed by Hausdorff property). Let fi be an element of partition
of unity in Ki ⊂ Ui, where Ki is a closed set. Then f1, . . . , fk are elements of C∞(M) with nonempty
disjoint supports, which is linearly independent obviously.
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Problem (2-8). Define F : Rn → RPn by F
(
x1, . . . , xn

)
=
[
x1, . . . , xn, 1

]
. Show that F is a diffeomorphism

onto a dense open subset of RPn. Do the same for G : Cn → CPn defined by G
(
z1, . . . , zn

)
=
[
z1, . . . , zn, 1

]
(see Problem 1-9).

Solution (2-8). It is obvious that F (Rn) = {
[
x1, . . . , xn, xn+1

]
: xn+1 > 0} ≜ U . As U is smooth chart

for RPn, it is open. Then, we need to show that U is dense in RPn. For any point p̃ ∈ RPn/U , set
p̃ = [p1, . . . , pn+1] = π(p1, . . . , pn+1), where π is the smooth chart for RPn. There is a neighborhood V of
p = (p1, . . . , pn+1), and a point q ∈ V such that qn+1 > 0. Then q̃ ∈ U

⋂
π(V ). Thus, U is dense.

Problem (2-9). Given a polynomial p in one variable with complex coefficients, not identically zero, show
that there is a unique smooth map p̃ : CP1 → CP1 that makes the following diagram commute, where CP1 is
1 -dimensional complex projective space and G : C → CP1 is the map of Problem 2-8: (Used on p. 465.)

C G−−−−→ CP1

p

y yp̃
C G−−−−→ CP1

Solution (2-9). Assume p(z) =
∑n
i=0 aiz

n. For (z1, z2) ∈ U+
2 , let p̃([z1, z2]) = [

∑n
i=0 aiz

i
1z
n−i
2 ] (for

(z1, z2) ∈ U−
2 , it is the same). Then, it is a straightforward computation that the diagram commutes.

The uniqueness is guaranteed by the dense property of G and the continuity of p̃.

Problem (2-10). For any topological space M , let C(M) denote the algebra of continuous functions f :
M → R. Given a continuous map F :M → N , define F ∗ : C(N) → C(M) by F ∗(f) = f ◦ F .
(a) Show that F ∗ is a linear map.
(b) Suppose M and N are smooth manifolds. Show that F :M → N is smooth if and only if F ∗ (C∞(N)) ⊆
C∞(M).
(c) Suppose F : M → N is a homeomorphism between smooth manifolds. Show that it is a diffeomorphism
if and only if F ∗ restricts to an isomorphism from C∞(N) to C∞(M).
Remark: this result shows that in a certain sense, the entire smooth structure of M is encoded in the subset
C∞(M) ⊆ C(M). In fact, some authors define a smooth structure on a topological manifold M to be a
subalgebra of C(M) with certain properties. (Used on p. 75.)

Solution (2-10).
(a) F ∗(af + bg) = (af + bg) ◦ F = af ◦ F + bg ◦ F = aF ∗(f) + bF ∗(g).
(b) The “=⇒” part is obvious, as f ◦ F is smooth if both f and F are. To prove the “⇐=” part, we need
to prove that ψ ◦ F ◦ ϕ−1 is smooth for each chart (U, ϕ) in M and (V, ψ) in N . As ϕ−1 is smooth, a
straightforward idea is to set fi for each component function of ψ and ψ ◦ F = (fi ◦ F ). As fi ◦ F is smooth
by the assumption, the proof seems to be done. However, there is a problem that fi is defined in M and ψ is
defined in V ⊂ M . Thus, there should be some modifications. We can get a closed ball W in V , and get a
partition of unity u which satisfies u(x) = 1 when x ∈W and supp(u) ⊂ V . Let fi = ψiu, we are done.
(c) “=⇒”. If F is a diffeomorphism, then F ∗ is invertible linear map ((F−1)∗ as the inverse), linear map
between infine dimensional spaces. Thus, F ∗ is an isomorphism from C∞(N) to C∞(M).
“⇐=”. As F ∗ is an isomorphism from C∞(N) to C∞(M), we have F ∗ (C∞(N)) = C∞(M) and (F−1)∗ (C∞(M)) =
C∞(N). By the result of (b), F and F−1 are both smooth. Thus, F is a diffeomorphism.

Problem (2-11). Suppose V is a real vector space of dimension n ≥ 1. Define the projectivization of V ,
denoted by P(V ), to be the set of 1-dimensional linear subspaces of V , with the quotient topology induced by
the map π : V \{0} → P(V ) that sends x to its span. (Thus P (Rn) = RPn−1.) Show that P(V ) is a topological
(n−1)-manifold, and has a unique smooth structure with the property that for each basis (E1, . . . , En) for V ,
the map E : RPn−1 → P(V ) defined by E

[
v1, . . . , vn

]
=
[
viEi

]
(where brackets denote equivalence classes)

is a diffeomorphism. (Used on p.561.)

Solution (2-11). Take the standard orthogonal basis of V and build the smooth structure as RPn−1.
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Note that the answer of this problem is not such easy.

Problem (2-12). State and prove an analogue of Problem 2-11 for complex vector spaces.

Problem (2-13). Suppose M is a topological space with the property that for every indexed open cover X of
M , there exists a partition of unity subordinate to X . Show that M is paracompact.

Solution (2-13). For any open cover X ofM , from the definition of the partition of unity, there is an indexed
family (ψα)α∈A of continuous functions, such that supp(ψα) ⊂ Xα for each α. As supp(ψα) = ψ−1((0,+∞))
and ψ is continuous, thus supp(ψα) is an open set. The property of intersecting finite open set for each point
is also from the partition of unity. Thus, M is paracompact.

Problem (2-14). Suppose A and B are disjoint closed subsets of a smooth manifold M . Show that there
exists f ∈ C∞(M) such that 0 ≤ f(x) ≤ 1 for all x ∈M , f−1(0) = A, and f−1(1) = B.

Solution (2-14). From Level Sets of Smooth Functions Theorem, there are two smooth nonnegative functions
g, h :M → R such that g−1(0) = A and h−1(0) = B. Let f = g

g+h .
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3 Tangent Vectors

3.1 Concepts

Definition (Tangent Vector and Tangent Space). Let M be a smooth manifold with or without boundary,
and let p be a point of M . A linear map v : C∞(M) → R is called a derivation (tangent vector) at p if it
satisfies

v(fg) = f(p)vg + g(p)vf for all f, g ∈ C∞(M)

The set of all derivations of C∞(M) at p, denoted by TpM , is a vector space called the tangent space to M
at p.

Definition (Differential). If M and N are smooth manifolds with or without boundary and F : M → N is
a smooth map, for each p ∈M we define a map

dFp : TpM → TF (p)N,

called the differential of F at p, as follows. Given v ∈ TpM , we let dFp(v) be the derivation at F (p) that
acts on f ∈ C∞(N) by the rule

dFp(v)(f) = v(f ◦ F ).

Definition (Tangent Bundle). Given a smooth manifold M with or without boundary, the tangent bundle
of M , denoted by TM , is the disjoint union of the tangent spaces at all points of M :

TM =
∐
p∈M

TpM.

Definition (Global Differential). If M and N are smooth manifolds with or without boundary and F :M →
N is a smooth map. By putting together the differentials of F at all points of M , we obtain a globally defined
map between tangent bundles, called the global differential and denoted by dF : TM → TN . This is just the
map whose restriction to each tangent space TpM ⊆ TM is dFp.

Definition (Velocity Vector). let M be a smooth manifold with or without boundary. Given a smooth curve
γ : J →M and t0 ∈ J , the velocity of γ at t0 is γ′ (t0), to be the vector

γ′ (t0) = dγ

(
d

dt

∣∣∣∣
t0

)
∈ Tγ(t0)M,

where d/ dt|t0 is the standard coordinate basis vector in Tt0R.

3.2 Problems

Problem (3-1). Suppose M and N are smooth manifolds with or without boundary, and F : M → N is a
smooth map. Show that dFp : TpM → TF (p)N is the zero map for each p ∈ M if and only if F is constant
on each component of M .

Solution (3-1). For any p in M , choose smooth coordinate charts (U, ϕ) for M containing p and (V, ψ) for
N containing F (p), we obtain the coordinate representation F̂ = ψ ◦ F ◦ ϕ−1 and

dFp(
∂

∂xi

∣∣∣
p
) =

∂F̂ j

∂xi
(ϕ(p))

∂

∂yj

∣∣∣
F (p)
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“⇐=”. F is constant ⇒ F̂ = ψ ◦ F ◦ ϕ−1 is a constant ⇒ ∂F̂ j

∂xi ≜ 0 ⇒ dFp is the zero map.

“=⇒”. dFp is the zero map. ⇒ ∂F̂ j

∂xi (ϕ(p))
∂
∂yj

∣∣∣
F (p)

= 0 for all j ⇒ ∂F̂ j

∂xi (ϕ(p)) = 0 because ∂
∂yj

∣∣∣
F (p)

is the

basis of TNF (p), and p can be any point in U . ⇒ ∂F̂ j

∂xi ≡ 0 in U ⇒ F̂ = ψ ◦ F ◦ ϕ−1 is a constant ⇒ F is
constant.

Problem (3-4). Show that TS1 is diffeomorphic to S1 × R.

Solution (3-4). Choose a smooth structure of S1 with two smooth charts, (U ≜ S1/{(1, 0)}, ϕ) and (V ≜
S1/{(−1, 0)}, ψ), where ϕ and ψ are both anticlockwise angle functions. Thus, for any point p ∈ U

⋂
V ,

d
dϕ

∣∣∣
p
= d

dψ

∣∣∣
p
. Define a map F : TS1 → S1 × R by F (p ∈ U, ddϕ

∣∣∣
p
∈ TpU) = (p, ddϕ

∣∣∣
p
) and F (p ∈ V, d

dψ

∣∣∣
p
∈

TpV ) = (p, d
dψ

∣∣∣
p
). By Gluing Lemma for Smooth Maps. F exists and is smooth for TS1 → S1 × R. Because

F is diffeomorphic for U and V respectively, the proof is done.

Problem (3-5). Let S1 ⊆ R2 be the unit circle, and let K ⊆ R2 be the boundary of the square of side 2
centered at the origin: K = {(x, y) : max(|x|, |y|) = 1}. Show that there is a homeomorphism F : R2 → R2

such that F
(
S1
)
= K, but there is no diffeomorphism with the same property. [Hint: let γ be a smooth curve

whose image lies in S1, and consider the action of dF (γ′(t)) on the coordinate functions x and y.] (Used on
p. 123.)

Solution (3-5).
(a) The homeomorphism could be construct by mapping each 1

8 arc to 1
8 side.

(b) If F : R2 → R2 is a diffeomorphism such that F
(
S1
)
= K. Consider a chart (U, ϕ) containing (1, 1) ∈ K

and a chart (V, ψ) containing F−1((1, 1)) ∈ S1. Let γ be a smooth curve whose image lies in S1. Then,
F ◦ γ is a smooth curve whose image lies in K. In a small neighborhood of F−1((1, 1)) ∈ S1 in V , F ◦ γ is
constant at x-axis or y-axis. Thus, dF (γ′(t)) = (F ◦ γ)′(t) ≡ 0 in a small neighborhood of (1, 1) ∈ K in U .
This contradicts the assumption that F ◦ γ is a smooth curve whose image lies in K.

Problem (3-6). Consider S3 as the unit sphere in C2 under the usual identification C2 ↔ R4. For each
z =

(
z1, z2

)
∈ S3, define a curve γz : R → S3 by γz(t) =

(
eitz1, eitz2

)
. Show that γz is a smooth curve whose

velocity is never zero.

Solution (3-6). γ′z(t) = (ieitz1, ieitz2) = iγz(t). As γz(t) ∈ S3 is never zero, then γ′z(t) is never zero.

Note that the answer uses charts for S3, which is more formal.

Problem (3-7). Let M be a smooth manifold with or without boundary and p be a point of M . Let C∞
p (M)

denote the algebra of germs of smooth real-valued functions at p, and let DpM denote the vector space of
derivations of C∞

p (M). Define a map Φ : DpM → TpM by (Φv)f = v ([f ]p). Show that Φ is an isomorphism.
(Used on p. 71.)

Problem (3-8). Let M be a smooth manifold with or without boundary and p ∈M . Let VpM denote the set
of equivalence classes of smooth curves starting at p under the relation γ1 ∼ γ2 if (f ◦ γ1)′ (0) = (f ◦ γ2)′ (0)
for every smooth real-valued function f defined in a neighborhood of p. Show that the map Ψ : VpM → TpM
defined by Ψ[γ] = γ′(0) is well defined and bijective. (Used on p.72. )
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4 Submersions, Immersions, and Embeddings

4.1 Concepts

Definition (Smooth Submersion). If M and N are smooth manifolds with or without boundary, a smooth
map F :M → N is called a smooth submersion if its differential is surjective at each point (or equivalently,
if rankF = dimN ).

Definition (Smooth Immersion). If M and N are smooth manifolds with or without boundary, a smooth
map F :M → N is called a smooth immersion if its differential is injective at each point (or equivalently, if
rankF = dimM ).

Definition (Smooth Embedding). If M and N are smooth manifolds with or without boundary, a smooth
embedding of M into N is a smooth immersion F : M → N that is also a topological embedding, i.e., a
homeomorphism onto its image F (M) ⊆ N in the subspace topology.

Definition (Section of Map). If M and N are smooth manifolds with or without boundary, π : M → N is
any continuous map, a section of π is a continuous right inverse for π, i.e., a continuous map σ : N → M
such that π ◦ σ = IdN .

Definition (Topological Immersion). If X and Y are topological spaces, a continuous map F : X → Y
is called a topological immersion if every point of X has a neighborhood U such that F |U is a topological
embedding.

Definition (Topological Submersion). If X and Y are topological spaces, a continuous map π : X → Y is
a topological submersion if every point of X is in the image of a (continuous) local section of π.

Definition (Smooth Covering Map). If E and M are connected smooth manifolds with or without boundary,
a map π : E → M is called a smooth covering map if π is smooth and surjective, and each point in M has
a neighborhood U such that each component of π−1(U) is mapped diffeomorphically onto U by π.

4.2 Problems

Problem (4-1). Use the inclusion map Hn ↪→ Rn to show that Theorem 4.5 does not extend to the case in
which M is a manifold with boundary. (Used on p. 80.)

Theorem 4.5 (Inverse Function Theorem for Manifolds). SupposeM andN are smooth manifolds,
and F :M → N is a smooth map. If p ∈M is a point such that dFp is invertible, then there are connected
neighborhoods U0 of p and V0 of F (p) such that F |U0

: U0 → V0 is a diffeomorphism.

Solution (4-1). Let M = Hn, N = Rn, F = ι : Hn ↪→ Rn, and p = 0 ∈ Hn. Then, dFp = Id is invertible.
However, any connected neighborhoods U0 of p = 0 and V0 of F (p) = 0 is not diffeomorphic, as the formal
one is manifold with nonempty boundary and the latter one is not.

Problem (4-2). SupposeM is a smooth manifold (without boundary), N is a smooth manifold with boundary,
and F :M → N is smooth. Show that if p ∈M is a point such that dFp is nonsingular, then F (p) ∈ IntN .
(Used on pp .80,87.)

Solution (4-2). Assume F (p) ∈ ∂N , then there is a chart (V, ψ) for F (p) such that ψ(V ) is diffeomorphic
to Hn and ψ(F (p)) = 0. Assume (U, ϕ) is a chart for p. Let (xi)i∈[m] be the coordinate of U and (yi)i∈[n] be
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the coordinate of V . Then F (q)n ≡ 0 for any q ∈ U . The differential of F at p is
∂F 1

∂x1 (p) · · · ∂F 1

∂xm (p)
...

. . .
...

∂Fn

∂x1 (p) · · · ∂Fn

∂xm (p)


and ∂Fn

∂xi ≡ 0 for i ∈ [m]. Thus, dFp is singular, which is a contradiction.

Problem (4-4). Let γ : R → T2 be the curve of Example 4.20. Show that the image set γ(R) is dense in
T2. (Used on pp .502,542.)

Solution (4-4). The proof is finished in the learning of Point Set Topology.

Problem (4-5). Let CPn denote the n-dimensional complex projective space, as defined in Problem 1-9. (a)
Show that the quotient map π : Cn+1\{0} → CPn is a surjective smooth submersion. (b) Show that CP1 is
diffeomorphic to S2. (Used on pp. 172, 560.)

Solution (4-5).
(a) The surjection is by the definition of CPn. For any p = (z1, . . . , zn, zn+1) ∈ Un+1, π(p) = [z1, . . . , zn, zn+1].
Let (U, ϕi) be a chart containing π(p), ϕi ◦ π ◦ Id−1(z1, . . . , zn+1) = ( z1

zn+1
, . . . , 1, . . . zn

zn+1
), which is smooth.

For submersion, differentiate this map and we can get rank(dFp) = 2n. (b) This is a long way to learn
detailly.

Problem (4-6). Let M be a nonempty smooth compact manifold. Show that there is no smooth submersion
F :M → Rk for any k > 0.

Solution (4-6). By Properties of Smooth Submersions, F is smooth submersion → F is open map → F (M)
is an open set in Rk. Besides, F is smooth → F is continuous, M is compact → F (M) is compact in Rk →
F (M) is a bounded and closed set in Rk. Thus, F (M) can only be empty set, which is a contradiction.

Problem (4-8). This problem shows that the converse of Theorem 4.29 is false. Let π : R2 → R be defined
by π(x, y) = xy. Show that π is surjective and smooth, and for each smooth manifold P , a map F : R → P
is smooth if and only if F ◦ π is smooth; but π is not a smooth submersion.

Solution (4-8). π is smooth obviously. π(R, 1) = R shows that π is surjective. dF(x,y) = (y, x) →
rank dF(0,0) = 0 < 1 → F is not a submersion. If F : R → P is smooth, then F ◦ π is smooth by
composition. If F ◦ π is smooth, then F (x) = F ◦ π(x, 1) is also smooth.

Problem (4-10). Show that the map q : Sn → RPn defined in Example 2.13(f) is a smooth covering map.
(Used on pp .550.)

Solution (4-10). For (x1, . . . , xn, xn+1) ∈ Sn, q(x1, . . . , xn, xn+1) = q(−x1, . . . ,−xn,−xn+1) = [x1, . . . , xn, xn+1].
The map is smooth and surjective obviously. For each p ∈ RPn, it must be contained in some chart (Vi, ψi)
of RPn. Vi = {[x1, . . . , xn, xn+1] : xi ̸= 0} is diffeomorphic to U+

i = {(x1, . . . , xn, xn+1) ∈ Sn : xi > 0} and
U−
i = {(x1, . . . , xn, xn+1) ∈ Sn : xi < 0}, which are equal to q−1(Vi) and mapped diffeomorphically onto Vi.

Problem (4-12). Using the covering map ε2 : R2 → T2 (see Example 4.35), show that the immersion
X : R2 → R3 defined in Example 4.2(d) descends to a smooth embedding of T2 into R3. Specifically, show

that X passes to the quotient to define a smooth map X̃ : T2 → R3, and then show that X̃ is a smooth
embedding whose image is the given surface of revolution.

Solution (4-12). For X : R2 → R3, X(u, v) = ((2 + cos 2πu) cos 2πv, (2 + cos 2πu) sin 2πv, sin 2πu), it is a
smooth immersion of R2 into R3 whose image is the doughnut-shaped surface obtained by revolving the circle
(y− 2)2 + z2 = 1 in the (y, z)-plane about the z-axis (Fig. 4.1). X is a constant in each fiber of ε2 as X has
period of positive integer in two input.
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As ε2 is surjective and smooth submersion (smooth covering map), using Theorem 4.30 (Passing Smoothly

to the Quotient), for the immersion X : R2 → R3, there is a unique smooth map X̃ : T2 → R3 such that

X = X̃ ◦ ε2. Thus, Im(X̃) is the given surface of revolution (doughnut-shaped surface).

Then, we need to prove that X̃ is a smooth embedding. An intuition is to prove that X̃ is an injective
immersion and as T2 is compact we can use Proposition 4.22 to prove that X̃ is an embedding. dXp =

dX̃ε2(p) ◦ dε2p, X is an immersion and ε2 is a locally diffeomorphism ⇒ rank(X̃) = rank(X) = 2, ε2 is

surjective ⇒ X̃ is an immersion.

To prove that X̃ is injective, assume p1 = (e2πx
1i, e2πx

2i) ∈ T2, p2 = (e2πy
1i, e2πy

2i) ∈ T2 and X̃(p1) =

X̃(p2). Then

(2 + cos 2πx1) cos 2πx2 = (2 + cos 2πy1) cos 2πy2

(2 + cos 2πx1) sin 2πx2 = (2 + cos 2πy1) sin 2πy2

sin 2πx1 = sin 2πy1

To satisfy sin 2πx1 = sin 2πy1, we have two choices, (1) 2πx1 = π − 2πy1 or (2) 2πx1 = 2πy1. If the
(2) is satisfied ⇒ x1 = x2 ⇒ cos 2πx2 = cos 2πy2 and sin 2πx2 = sin 2πy2 ⇒ x2 = y2. Then, we prove

that X̃ is injective. If (1) is satisfied, then (2 + cos 2πx1) cos 2πx2 = (2 − cos 2πx1) cos 2πy2 and (2 +
cos 2πx1) sin 2πx2 = (2− cos 2πx1) sin 2πy2, then 2πx2 = 2πy2+π by the period of π for tan. Then, we have
(2+ cos 2πx1) cos 2πx2 = −(2− cos 2πx1) cos 2πx2 ⇒ cos 2πx2 = 0 ⇒ 2πx2 = π

2 + kπ ⇒ 2πy2 = 2πx2 −π =
π
2 + kπ = 2πx2 ⇒ x2 = y2 ⇒ x1 = y1. Thus, we also prove that X̃ is injective.

Problem (4-13). Define a map F : S2 → R4 by F (x, y, z) =
(
x2 − y2, xy, xz, yz

)
. Using the smooth covering

map of Example 2.13(f) and Problem 4-10, show that F descends to a smooth embedding of RP2 into R4.

Solution (4-13). By Problem 4-10, π : S2 → RP2 is a smooth covering map. At each fiber of π, F is a
constant as F is quadratic homogeneous polynomial in each dimension. F is smooth obviously. Thus, by
Theorem 4.30 (Passing Smoothly to the Quotient), we have there is a unique smooth map F̃ : RP2 → R4.

To prove that F̃ is an embedding, I also want to prove that F̃ is an injective immersion; then by the result
that RP2 is a compact space (S2 is compact and its quotient is as well), we can use the Proposition 4.22 to

prove that F̃ is embedding. Calculate the matrix form of differential dF :

dF =

 2x y z 0
−2y x 0 z
0 0 x y


The determinant of sequential principal minor for dF is 2x(x2 + y2) ̸= 0. Thus, F is immersion. Note that

we can also prove that F is immersion by writing the formula of F̃ explicitly,

F̃ ([x, y, z]) =
1

x2 + y2 + z2
(
x2 − y2, xy, xz, yz

)
Then, calculating the differential of F̃ can show its immersion property.

As π is a locally diffeomorphism and surjective, F̃ is immersion.

To prove that F̃ is injective, assume we have (x, y, z) and (x′, y′, z′) such that x2 + y2 + z2 = 1, x′
2
+

y′
2
+ z′

2
= 1 and F̃ ([x, y, z]) = F̃ ([x′, y′, z′]). Then,

x2 − y2 = x′
2 − y′

2
, xy = x′y′, xz = x′z′, yz = y′z′

According to those equations, we have (x, y, z) = ±(x′, y′, z′). Thus, [(x, y, z)] = [(x′, y′, z′)] and F̃ is
injective.
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5 Submanifolds

5.1 Concepts

Definition (Embedded Submanifold). Suppose M is a smooth manifold with or without boundary. An
embedded submanifold of M is a subset S ⊆ M that is a manifold (without boundary) in the subspace
topology, endowed with a smooth structure with respect to which the inclusion map S ↪→ M is a smooth
embedding.

Definition (Immersed Submanifold). Suppose M is a smooth manifold with or without boundary. An
immersed submanifold of M is a subset S ⊆ M endowed with a topology (not necessarily the subspace
topology) with respect to which it is a topological manifold (without boundary), and a smooth structure with
respect to which the inclusion map S ↪→M is a smooth immersion.

Definition (Embedded Topological Submanifold). Suppose M is a topological manifold with or without
boundary. An embedded topological submanifold of M is a subset S ⊆ M that the inclusion map S ↪→ M is
a topological embedding.

Definition (Immersed Topological Submanifold). Suppose M is a topological manifold with or without
boundary. An immersed topological submanifold of M is a subset S ⊆M endowed with a topology such that
it is a topological manifold and such that the inclusion map is a topological immersion.

Definition (Properly Embedded). An embedded submanifold S ↪→M is said to be properly embedded if the
inclusion is a proper map.

Definition (Slice in Rn). If U is an open subset of Rn and k ∈ {0, . . . , n}, a k dimensional slice of U (or
simply a k-slice) is any subset of the form

S =
{(
x1, . . . , xk, xk+1, . . . , xn

)
∈ U : xk+1 = ck+1, . . . , xn = cn

}
for some constants ck+1, . . . , cn. (When k = n, this just means S = U .)

Definition (Slice in Manifold). Let M be a smooth n-manifold, and let (U,φ) be a smooth chart on M . If
S is a subset of U such that φ(S) is a k-slice of φ(U), then we say that S is a k-slice of U .

Definition (Regular Point). If Φ :M → N is a smooth map, a point p ∈M is said to be a regular point of
Φ if dΦp : TpM → TΦ(p)N is surjective.

Definition (Critical Point). If Φ :M → N is a smooth map, a point p ∈M is said to be a critical point of
Φ if dΦp : TpM → TΦ(p)N is not surjective.

Definition (Regular Value). If Φ :M → N is a smooth map, a point c ∈ N is said to be a regular value of
Φ if every point of the level set Φ−1(c) is a regular point.

Definition (Critical Value). If Φ :M → N is a smooth map, a point c ∈ N is said to be a critical value of
Φ if a point of the level set Φ−1(c) is a critical point.

Definition (Regular Level Set). If Φ :M → N is a smooth map, a level set Φ−1(c) is called a regular level
set if c is a regular value of Φ.

5.2 Problems

Problem (5-1). Consider the map Φ : R4 → R2 defined by

Φ(x, y, s, t) =
(
x2 + y, x2 + y2 + s2 + t2 + y

)
.

Show that (0, 1) is a regular value of Φ, and that the level set Φ−1(0, 1) is diffeomorphic to S2.
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Solution (5-1). Calculate the matrix of dΦ,

dΦ =

(
2x 1 0 0
2x 2y + 1 2s 2t

)
The sequencial principal minor of dΦ has determinant 4xy. If y = 0 or x = 0, then x2 + y = 0 ⇒ x = 0 and
y = 0 ⇒ s2 + t2 = 1 ⇒ rank(dΦ) = 2. If x ̸= 0 and y ̸= 0, then the sequencial principal minor of dΦ is > 0
and rank(dΦ) = 2. Thus, (0, 1) is a regular value of Φ.
For the level set Φ−1(0, 1) = {(x, y, s, t) ∈ R4 : y = −x2, x4 + s2 + t2 = 1}. In fact, the image of Φ−1(0, 1) is
not hard to image, if assuming s and t to be one variable we get a S1 embedded in S2. Construct a map F± :
Φ−1(0, 1) → S2, F±(x, y, s, t) = (±x2, s, t), where ± is for different charts of S2. Then, we only need to prove
that F± is diffeomorphic. Another idea is similar, let F : Φ−1(0, 1) → S = {(x, s, t) ∈ R3 : x4+ s2+ t2 = 1},
F (x, y, s, t) = (x, s, t). It is obvious that F is smooth and as y is uniquely determinated by x in Φ−1(0, 1),
F is a diffeomorphism. Thus, the problem is converted to proving S is diffeomorphic to S2. We can build
charts for S and prove it for each chart.

Note that, I do not know how to prove the diffeomorphism between S and R2. There is one answer that

constructs a map G : S → S2, G(x, y, z) = (x,y,z)√
x2+y2+z2

and G−1 with some computation. Then, it suffices to

show that G has constant rank 2 (by Theorem 4.14 (Global Rank Theorem) we have G a diffeomorphism).

Problem (5-4). Show that the image of the curve β : (−π, π) → R2 of Example 4.19 (The Figure-Eight
Curve t→ (sin 2t, sin t)) is not an embedded submanifold of R2. [Be careful: this is not the same as showing
that β is not an embedding.]

Solution (5-4). Let S = Im(β) be the Figure-Eight Curve with the subspace topology. If S has a smooth
structure making it an embedded submanifold of R2, then the inclusion map ι : S ↪→ R2 is a smooth embedding.
As rank(β) <= 1, dim(S) ≤ 1. It is not 0-manifold as its topology is not discrete topology (inherited from
R2). Thus, S is smooth 1-manifold. As smooth 1-manifold only have R and S up to diffeomorphism. As S
is compact, it is not diffeomorphic to R. As S has different fundamental group (Z⊕Z) with S (Z), they are
not homeomorphic, and thus not diffeomorphic.

Problem (5-5). Let γ : R → T2 be the curve of Example 4.20. Show that γ(R) is not an embedded
submanifold of the torus. [Remark: the warning in Problem 5-4 applies in this case as well.]

Solution (5-5). Let S = Im(γ) be the Dense Curve of T2 with the subspace topology. If S has a smooth
structure making it an embedded submanifold of T2, then the inlcusion map ι : S ↪→ T2 is a smooth embedding.
It is not 0-manifold as its topology is not discrete topoloty (inherited from T2 and a single point in S is not
open). If it is 1-manifold, it can not be diffeomorphic to S1 as it is not self-loop. It also can not be
diffeomorphic to R as R̄ = R is not self-loop while S̄ = T2. If S is smooth 2-manifold, S should cover some
open set U × V of T2, including rational×rational point, which is impossible. For some open set U × V , we
have p = (e2πti, e2παti) = (e2πpi, e2πqi) for some p, q ∈ Q, which means that (p +m)α = (q + n) for some
m,n ∈ Z. It contradicts that α is an irrational.

Note that to prove S is not 1-manifold, another idea is that R and S1 are both locally path-connected
while S is not.

Problem (5-6). Suppose M ⊆ Rn is an embedded m-dimensional submanifold, and let UM ⊆ TRn be the
set of all unit tangent vectors to M :

UM = {(x, v) ∈ TRn : x ∈M, v ∈ TxM, |v| = 1} .

It is called the unit tangent bundle of M . Prove that UM is an embedded ( 2m−1 )-dimensional submanifold
of TRn ≈ Rn × Rn. (Used on p. 147.)

18



Solution (5-6). First, TM ⊆ TRn is an embedded 2m-dimensional submanifold, because we can use Theorem
5.8 (Local Slice Criterion for Embedded Submanifolds) to construct the coordinate (x1, . . . , xm, 0, . . . , 0) for
M and thus ( ∂

∂x1
, . . . , ∂

∂xm
, 0, . . . , 0) for TpM . As UpM is embedded m− 1-submanifold for TpM , UM is an

embedded 2m− 1-dimensional submanifold for TRn.

Problem (5-7). Let F : R2 → R be defined by F (x, y) = x3 + xy + y3. Which level sets of F are embedded
submanifolds of R2 ? For each level set, prove either that it is or that it is not an embedded submanifold.

Solution (5-7). dF (x, y) = (3x2+y, 3y2+x). Its rank is equal to 1 when (x, y) ∈ R/{(0, 0), (− 1
3 ,−

1
3 )} = A.

By Theorem 5.12 (Constant-Rank Level Set Theorem), the level sets of F in F (A) are all embedded 1-
submanifolds of R2.

For F−1(F (− 1
3 ,−

1
3 )) = F−1( 1

27 ), we need to solve x3 + xy + y3 = 1
27 . By the method of undetermined

coefficients, we have

x3 + xy + y3 − 1

27
=

(
x+ y − 1

3

)(
y2 −

(
x− 1

3

)
y +

(
x2 +

1

3
x+

1

9

))
Thus, F−1( 1

27 ) = {(x, y) ∈ R2 : x+y− 1
3 = 0}

⋃
{(− 1

3 ,−
1
3 )}. It is an embedded submanifold with 0-manifold

and 1-manifold.

For F−1(F (0, 0)) = F−1(0) = {(x, y) ∈ R2 : x3 + xy + y3 = 0}, it is the folium of Descartes and not an
embedded 1-manifold.

Problem (5-8). Suppose M is a smooth n-manifold and B ⊆ M is a regular coordinate ball. Show that
M\B is a smooth manifold with boundary, whose boundary is diffeomorphic to Sn−1. (Used on p.225.)

Solution (5-8). It is obvious, as ∂(M\B) and ∂B is diffeomorphic to Sn−1.
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6 Sard’s Theorem

6.1 Concepts

Definition (Normal Space). SupposeM ⊆ Rn is an embedded m-dimensional submanifold. For each x ∈M ,
we define the normal space to M at x to be the (n −m)-dimensional subspace NxM ⊆ TxRn consisting of
all vectors that are orthogonal to TxM with respect to the Euclidean dot product.

Definition (Normal Bundle). Suppose M ⊆ Rn is an embedded m-dimensional submanifold. The normal
bundle of M , denoted by NM , is the subset of TRn ≈ Rn ×Rn consisting of vectors that are normal to M :

NM = {(x, v) ∈ Rn × Rn : x ∈M,v ∈ NxM} .

Definition (Tubular Neighborhood). A tubular neighborhood of M is a neighborhood U of M in Rn that is
the diffeomorphic image under E of an open subset V ⊆ NM of the form

V = {(x, v) ∈ NM : |v| < δ(x)},

for some positive continuous function δ :M → R.

Definition (Smooth Homotopy). If N and M are two smooth manifolds with or without boundary, a ho-
motopy H : N × I →M is called a smooth homotopy if it is also a smooth map, in the sense that it extends
to a smooth map on some neighborhood of N × I in N × R.

Definition (Smooth Homotopic). Two maps are said to be smoothly homotopic if there is a smooth homotopy
between them.

Definition (Transversality).

Two submanifolds intersect transversely. Suppose M is a smooth manifold. Two embedded submanifolds
S, S′ ⊆M are said to intersect transversely if for each p ∈ S ∩ S′, the tangent spaces TpS and TpS

′ together
span TpM (where we consider TpS and TpS

′ as subspaces of TpM ).

Map transverse to embedded submanifold. If F : N → M is a smooth map and S ⊆ M is an embedded
submanifold, we say that F is transverse to S if for every x ∈ F−1(S), the spaces TF (x)S and dFx (TxN)
together span TF (x)M .

6.2 Problems
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7 Lie Groups

7.1 Concepts

7.2 Problems
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8 Vector Fields

8.1 Concepts

8.2 Problems
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9 Integral Curves and Flows

9.1 Concepts

9.2 Problems
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10 Vector Bundles

10.1 Concepts

10.2 Problems

24


	Smooth Manifolds
	Concepts
	Problems

	Smooth Maps
	Concepts
	Problems

	Tangent Vectors
	Concepts
	Problems

	Submersions, Immersions, and Embeddings
	Concepts
	Problems

	Submanifolds
	Concepts
	Problems

	Sard's Theorem
	Concepts
	Problems

	Lie Groups
	Concepts
	Problems

	Vector Fields
	Concepts
	Problems

	Integral Curves and Flows
	Concepts
	Problems

	Vector Bundles
	Concepts
	Problems


