
A Note of the Chromatic Number of Kneser Graphs

Juncheng Wan, jorgenwan@gmail.com

This is a note of the chromatic number of Kneser graphs.

Pre-requisites of this note include a knowledge of the basic concepts of linear algebra, algebraic topology.
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1 Introduction

In 1956, Kneser conjectured the chromatic number of the Kneser graph χ(KG(n, k)) = n− 2k+2 [8]. In
1978, Lovász proved this conjecture with topological methods [9]. At the same year, Bárány gave a simple
proof [2], using the Borsuk–Ulam theorem [3] and a lemma of Gale [6]. In 2002, Greene simplified the proof
of Bárány’s without using Gale’s lemma [7].

In 1976, Stahl conjectured the m-th multichromatic number of the Kneser graph χm(KG(n, k)) =⌈
m
k

⌉
(n− 2k) + 2m [11].

In 2012, Meunier conjectured the chromatic number of the s-stable Kneser graph χ(KG(n, k)s) = n−sk+s
[10]. In 2015, Chen proved this conjecture with a generalization to m-th multichromatic number of the s-
stable Kneser graph χm(KG(n, k)s) = n − sk + sm [4]. In 2016, Alishahi and Hajiabolhassan proved a
generalization of Gale’s lemma and presented another proof of Chen’s result [1].
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2 Definition

Definition 1 (Kneser graph). For n ≥ 2k, the Kneser graph KG(n, k) is a graph whose vertex set consists
of all k-subsets of [n] and two vertices are adjacent if their corresponding k sets are disjoint.

Definition 2 (Hemisphere H(x)). For an x ∈ Sd, H(x) is the open hemisphere centered at x, i.e. H(x) ={
y ∈ Sd : ⟨x, y⟩ > 0

}
.

Definition 3 (s-stable). For a positive integer s, a subset A of [n] is said to be an s-stable subset if

s ≤ |i− j| ≤ n− s for each i ̸= j ∈ A. The family of all s-stable k-subsets of [n] is denoted by
(
[n]
k

)
s

Definition 4 (Length of the longest alternating subsequence). For an X = (x1, . . . , xn) ∈ {+,−, 0}n, an
alternating subsequence of X is a subsequence of nonzero terms of X such that each of its two consecutive
members have different signs. In other words, xj1 , . . . , xjm (1 ≤ j1 < · · · < jm ≤ n) is an alternating subse-
quence of X if xji ̸= 0 for each i ∈ [m] and xji ̸= xji+1

for i = 1, . . . ,m − 1. The length of the longest
alternating subsequence of X is denoted by alt(X).

Definition 5 (Signed-power set). Let V be a nonempty finite set of size n. The signed-power set of V ,
denoted by Ps(V ), is defined as follows:

Ps(V ) = {(A,B) : A,B ⊆ V,A ∩B = ∅}

Definition 6 (Signed-increasing property). A signed-increasing property P, is a superset-closed family P ⊆
Ps(V ), i.e. for any F1 ∈ P, if F1 ⊆ F2 ∈ Ps(V ), then F2 ∈ P.

Definition 7 (X+, X−).

X+ = {j : xj = +} and X− = {j : xj = −}

Definition 8 (Z+
x , Z−

x ). Let d ≥ 0 be an integer, Sd be the d-dimensional sphere, and Z ⊂ Sd be a finite
set. For an x ∈ Sd, define Zx = (Z+

x , Z−
x ) ∈ Ps(Z) where Z+

x = H(x) ∩ Z and Z−
x = H(−x) ∩ Z.

Definition 9 (Xσ). For any bijection σ : [n] → V , Xσ = (σ (X+) , σ (X−)) is an identification between
{+,−, 0}n and Ps(V ), where

X+ = {j : xj = +} and X− = {j : xj = −}

Definition 10 (alt(P, σ)). Let σ : [n] → V be a bijection and P ⊆ Ps(V ) be a signed-increasing property.
Define

alt(P, σ) = max {alt(X) : X ∈ {+,−, 0}n with Xσ /∈ P}

Definition 11 (alt(P)).

alt(P) = min{alt(P, σ) : σ : [n] → V is a bijection }

Definition 12 (Chromatic number of hypergraph χ(H)). A t-coloring of a hypergraph H is a map c :
V (H) → [t] such that for no edge e ∈ E(H), we have |c(e)| = 1. The chromatic number of H is the minimum
possible t admitting a t-coloring, denoted by χ(H).

Definition 13 (Kneser graph of hypergraph). For a hypergraph H, the Kneser graph of H is a graph whose
vertex set is E(H) and two vertices are adjacent if their corresponding edges are vertex disjoint, denoted by
KG(H).

Definition 14 (Kneser representation of graph). For any graph G, the hypergraph H, for which G and
KG(H) is isomorphic, is called a Kneser representation of G.
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Definition 15 (Colorability defect of hypergraph). The colorability defect of a hypergraph H, is the minimum
number of vertices that should be excluded so that the induced subhypergraph on the remaining vertices is
2-colorable, denoted by cd(H).

Definition 16 (alt(H, σ), salt(H, σ)). Let H = (V,E) be a hypergraph and σ : [n] → V (H) be a bijection.
Define

alt(H, σ) = max
{
alt(X) : X ∈ {+,−, 0}n s.t. max

(∣∣E (
H

[
σ
(
X+

)])∣∣ , ∣∣E (
H

[
σ
(
X−)])∣∣) = 0

}
and

salt(H, σ) = max
{
alt(X) : X ∈ {+,−, 0}n s.t. min

(∣∣E (
H

[
σ
(
X+

)])∣∣ , ∣∣E (
H

[
σ
(
X−)])∣∣) = 0

}
.

In other words, alt(H, σ) (resp. salt(H, σ) ) is the maximum possible alt(X), where X ∈ {+,−, 0}n, such
that each of (resp. at least one of) σ (X+) and σ (X+) contains no edge of H.

Definition 17 (alt(H), salt(H)).

alt(H) = min
σ

alt(H, σ) and salt(H) = min
σ

salt(H, σ)

where the minimum is taken over all bijections σ : [n] → V (H).

Definition 18 (Z2-space). A Z2-space is a pair (T, v), where T is a topological space and v is an involution,
i.e. v : T → T is a continuous map such that v2 is the identity map.

Definition 19 (Free Z2-space). The Z2-space (T, v) is called free if there is no x ∈ T such that v(x) = x.

Definition 20 (Z2-map). For two Z2-spaces (T1, v1) and (T2, v2), a continuous map f : T1 → T2 is called a

Z2-map if f ◦ v1 = v2 ◦ f . The existence of such a map is denoted by (T1, v1)
Z2−→ (T2, v2).

Definition 21 (Z2-index, Z2-coindex). For a Z2-space (T, v), define the Z2-index and Z2-coindex of (T, v),
respectively, as

ind(T, v) = min
{
d ≥ 0(T, v)

Z2−→
(
Sd,−

)}
and

coind(T, v) = max
{
d ≥ 0

(
Sd,−

) Z2−→ (T, v)
}

If for any d ≥ 0, there is no (T, v)
Z2−→

(
Sd,−

)
, then we set ind (T, v) = ∞. Also, if (T, v) is not free, then

ind (T, v) = coind(T, v) = ∞.

Note that if T1
Z2−→ T2, then ind (T1) ≤ ind (T2) and coind (T1) ≤ coind (T2).

Definition 22 (Z2 equivalent). Two Z2-spaces T1 and T2 are Z2 equivalent, denoted by T1
Z2−→ T2, if

T1
Z2−→ T2 and T2

Z2−→ T1.

Definition 23 (Abstract simplicial complex). An abstract simplicial complex is a pair L = (V,K), where
V (the vertex set of L ) is a set and K ⊆ 2V (the set of simplices of L ) is a hereditary collection of subsets
of V , i.e. if A ∈ K and B ⊆ A, then B ∈ K. Any set A ∈ K is called a simplex of L.

The geometric realization of an abstract simplicial complex L is denoted by ∥L∥.

Definition 24 (Simplicial map). For two abstract simplicial complexes L1 = (V1,K1) and L2 = (V2,K2), a
simplicial map f : L1 → L2 is a map from V1 to V2 preserving the simplices, i.e. if A ∈ K1, then f(A) ∈ K2.
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Definition 25 (Simplicial involution). A simplicial involution is a simplicial map v : L → L such that v2

is the identity map.

Definition 26 (Simplicial Z2-complex). A simplicial Z2-complex is a pair (L, v) where L is a simplicial
complex and v : L → L is a simplicial involution.

Definition 27 (Free simplicial Z2-complex). A simplicial complex (L, v) is called free if there is no simplex
A of L such that v(A) = A.

Definition 28 (Simplicial Z2-map). For two simplicial Z2-complexes (L1, v1) and (L2, v2), the map f :
L1 → L2 is called a simplicial Z2-map if f is a simplicial map and f ◦ v1 = v2 ◦ f .

The existence of a simplicial Z2-map f : L1 → L2 implies the existence of a continuous Z2-map ∥f∥ :

∥L1∥
Z2−→ ∥L2∥ that is called the geometric realization of f .

Definition 29 (Common neighbors CN(A)). For a graph G = (V (G), E(G)) and a subset A ⊆ V (G), define
common neighbors of A as

CN(A) = {v ∈ V (G) : av ∈ E(G) for all a ∈ A} ⊆ V (G)\A.

Definition 30 (Box complex B(G)). Box complex B(G), is a free simplicial Z2-complex with vertex set
V (G) ⊎ V (G) = V (G)× [2] and the following set of simplices

{A ⊎B : A,B ⊆ V (G), A ∩B = ∅, G[A,B] is complete bipartite and CN(A) ̸= ∅ ̸= CN(B)}

The involution is given by interchanging the two copies of V (G).

Definition 31 (Box complex B0(G)). Box complex B0(G), is a free simplicial Z2-complex with vertex set
V (G) ⊎ V (G) = V (G)× [2] and the following set of simplices

{A ⊎B : A,B ⊆ V (G), A ∩B = ∅, G[A,B] is complete bipartite }.

The involution is given by interchanging the two copies of V (G).

For more about box complex, the reader can refer to [5].
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3 Results of χ(KG(n, k))

Theorem 1 (Borsuk-Ulam theorem, [3]). If Sk is the union of k+1 sets which are open in Sk, then one of
these sets contains antipodal points.

Theorem 2 (Gale’s lemma, [6]). If n and k are nonnegative integers, then there is a set V ⊂ Sk with 2n+k
elements such that |H(a) ∩ V | ≥ n for each a ∈ Sk.

Theorem 3 (χ(KG(n, k)), [9, 2, 7]). If the n-tuples of a set of 2n + k elements are partitioned into k + 1
classes, then one of the classes contains two disjoint n-tuples.
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4 Results of χm(KG(n, k)s)

Lemma 1 (Lemma 1 in [1]). Let n be a positive integer, V be an n-set, and σ : [n] → V be a bijection.
Also, let P ⊆ Ps(V ) be a signed-increasing property and set d = n− alt(P, σ)− 1. If d ̸= −1, then there are
a multiset Z ⊂ Sd of size n and a suitable identification of Z with V such that for any x ∈ Sd, Zx ∈ P. In
particular, for d ≥ 1, Z can be a set.

Revisit the proof of Lemma 1 in [1] as follows.

Proof. For simplicity of notation, assume that V = {v1, . . . , vn} where σ(i) = vi. Consider the following
curve

γ =
{(

1, t, t2, . . . , td
)
∈ Rd+1 : t ∈ R

}
and set W = {w1, w2, . . . , wn}, where wi = γ(i) for i = 1, 2, . . . , n. Now, let Z = {z1, z2, . . . , zn} ⊆ Sd

be a set such that zi = (−1)i wi

∥wi∥ for any 1 ≤ i ≤ n. Note that if d ≥ 1, then Z is a set. Consider the

identification between V and Z such that vi ∈ V is identified with zi for any 1 ≤ i ≤ n. It can be checked
that every hyperplane of Rd+1 passing trough the origin intersects γ in no more than d points. Moreover, if
a hyperplane intersects the curve in exactly d points, then the hyperplane cannot be tangent to the curve;
and consequently, at each intersection point, the curve passes from one side of the hyperplane to the other
side.

In what follows, for any y ∈ Sd, we will show that Zy ∈ P completing the proof. On the contrary, suppose
that there is a y ∈ Sd such that Zy /∈ P. Let h be the hyperplane passing trough the origin that contains
the boundary of H(y). We can move this hyperplane continuously to a position such that it still contains
the origin and has exactly d points of W = {w1, w2, . . . , wn} while during this movement no points of W
crosses from one side of h to the other side. Consequently, during the aforementioned movement, no points
of Z = {z1, z2, . . . , zn} crosses from one side of h to the other side. Hence, at each of these intersections,
γ passes from one side of h to the other side. Let h+ and h− be two open half-spaces determined by the
hyperplane h. Now consider X = (x1, x2, . . . , xn) ∈ {+,−, 0}n\{0} such that

xi =


0 if wi is on h

+ if wi is in h+ and i is even

+ if wi is in h− and i is odd

− otherwise.

Assume that xi1 , xi2 , . . . , xin−d
are nonzero entries of X, where i1 < i2 < · · · < in−d. It is easy to check

that any two consecutive terms of xij ’s have different signs. Since X has n − d = alt(P, σ) + 1 nonzero
entries, we have alt(X) = alt(−X) = alt(P, σ) + 1; and therefore, both Xσ and (−X)σ are in P. Also, one
can see that either Xσ ⊆ Zy or (−X)σ ⊆ Zy. Therefore, since P is a signed-increasing property, we have
Zy ∈ P that is a contradiction.

Theorem 4. For positive integers n, k, and s with n ≥ sk, if s is an even integer and k ≥ m, then
χm (KG(n, k)s) = n− sk + sm.

I think Lemma 1 in [1] could be generalized.

First, give some definitions.

Definition 32 (Length of the longest f -alternating subsequence). For an X = (x1, . . . , xn) ∈ {+,−, 0}n,
an f -alternating subsequence of X is a subsequence of nonzero terms of X such that each of its f consecutive
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members have the same signs while the next f consecutive members have different signs compared with the
previous one. In other words, xj1 , . . . , xjm (1 ≤ j1 < · · · < jm ≤ n) is an f -alternating subsequence of X
if xji ̸= 0 for each i ∈ [m] and xj1 = xj2 = · · · = xjf ̸= xjf+1

= xjf+2
= · · · = xj2f ̸= xj2f+1

· · · for
i = 1, . . . ,m− 1. The length of the longest f -alternating subsequence of X is denoted by altf (X). Note that
alt1(X) = alt(X).

Definition 33 (altf (P, σ)). Let σ : [n] → V be a bijection and P ⊆ Ps(V ) be a signed-increasing property.
Define

altf (P, σ) = max {altf (X) : X ∈ {+,−, 0}n with Xσ /∈ P}

Then we have the next Lemma.

Lemma 2 (A Generalization of Lemma 1 in [1]). Let n be a positive integer, V be an n-set, and σ : [n] → V
be a bijection. Also, let P ⊆ Ps(V ) be a signed-increasing property and set d = ⌊ 1

f (n − altf (P, σ) − 1)⌋. If

d ̸= −1, then there are a multiset Z ⊂ Sd of size n and a suitable identification of Z with V such that for
any x ∈ Sd, Zx ∈ P. In particular, for d ≥ 1, Z can be a set.

Proof. For simplicity of notation, assume that V = {v1, . . . , vn} where σ(i) = vi. Consider the following
curve

γ =
{(

1, t, t2, . . . , td
)
∈ Rd+1 : t ∈ R

}
and set W = {w1, w2, . . . , wn}, where wi = γ(i) for i = 1, 2, . . . , n. Now, let Z = {z1, z2, . . . , zn} ⊆ Sd be

a set such that zi = (−1)⌊
i
f ⌋ wi

∥wi∥ for any 1 ≤ i ≤ n. Note that if d ≥ 1, then Z is a set. Consider the

identification between V and Z such that vi ∈ V is identified with zi for any 1 ≤ i ≤ n. It can be checked
that every hyperplane of Rd+1 passing trough the origin intersects γ in no more than d points. Moreover, if
a hyperplane intersects the curve in exactly d points, then the hyperplane cannot be tangent to the curve;
and consequently, at each intersection point, the curve passes from one side of the hyperplane to the other
side.

In what follows, for any y ∈ Sd, we will show that Zy ∈ P completing the proof. On the contrary, suppose
that there is a y ∈ Sd such that Zy /∈ P. Let h be the hyperplane passing trough the origin that contains
the boundary of H(y). We can move this hyperplane continuously to a position such that it still contains
the origin and has exactly d points of W = {w1, w2, . . . , wn} while during this movement no points of W
crosses from one side of h to the other side. Consequently, during the aforementioned movement, no points
of Z = {z1, z2, . . . , zn} crosses from one side of h to the other side. Hence, at each of these intersections,
γ passes from one side of h to the other side. Let h+ and h− be two open half-spaces determined by the
hyperplane h.

Now consider X = (x1, x2, . . . , xn) ∈ {+,−, 0}n\{0}, assume X are first partitioned into ⌊n
f ⌋ parts

{Xi}i∈[⌊n
f ⌋], such that each part has f elements. Namely, X1 = {x1, . . . , xf}, X2 = {xf+1, . . . , x2f}, . . .,

X⌊n
f ⌋ = {xf⌊n

f ⌋−f+1, . . . , x⌊n
f ⌋f}. Correspondingly, write W1 = {w1, . . . , wf}, W2 = {wf+1, . . . , w2f}, . . .,

W⌊n
f ⌋ = {wf⌊n

f ⌋−f+1, . . . , w⌊n
f ⌋f}.

Let cntWi record the number of elements {w1, w2, . . . , wi−1} on h. Let cntXi record the number of zero

elements {x1, x2, . . . , xi−1}. Let diff
(X,W )
i = ⌊ cntXi

f ⌋ − cntWi . Note that in the followings,
cntXi
f should be a

integer.
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Now, we assign the sign for each Xi in the following:

all elements of Xi =



+ if diff
(X,W )
i = 0 and all W⌊ i−1

f ⌋ are in h+ and cntWi + ⌊ i−1
f ⌋ is even

− if diff
(X,W )
i = 0 and all W⌊ i−1

f ⌋ are in h+ and cntWi + ⌊ i−1
f ⌋ is odd

− if diff
(X,W )
i = 0 and all W⌊ i−1

f ⌋ are in h− and cntWi + ⌊ i−1
f ⌋ is even

+ if diff
(X,W )
i = 0 and all W⌊ i−1

f ⌋ are in h− and cntWi + ⌊ i−1
f ⌋ is odd

0 otherwise.

Assume that xi1 , xi2 , . . . , xin−fd
are nonzero entries of X, where i1 < i2 < · · · < in−fd. It is easy to check

that any two f -gap consecutive terms of xij ’s have different signs, and with the f -gap are of the same sign.
Since X has n − fd ≥ altf (P, σ) + 1 nonzero entries, we have altf (X) = altf (−X) ≥ altf (P, σ) + 1; and
therefore, both Xσ and (−X)σ are in P. Also, one can see that either Xσ ⊆ Zy or (−X)σ ⊆ Zy. Therefore,
since P is a signed-increasing property, we have Zy ∈ P that is a contradiction.

When altf (P, σ) ≤ alt(P, σ)f + f + n− 1− nf , we have a larger bound for d, as 1
f (n− altf (P, σ)− 1) ≥

n− alt(P, σ)− 1.
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