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This is a note of graph decomposition of cycles and edges.

Pre-requisites of this note include a knowledge of the basic concepts of linear algebra, probability theory.
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1 Introduction

In 1966, Erdős and Gallai made the following conjecture [4]:

Conjecture 1.1. Any n-vertex graph can be decomposed into O(n) cycles and edges.

Following Theorem 1.1 in [5], Erdős and Gallai greedily removed cycles of longest length O(n) and got
the bound O(n log n), following from a simple iteration.

Theorem 1.1. Every graph with n nodes and more than (n − 1)l/2 edges (l ≥ 2) contains a circle with
more than l edges.

In 2014, Fox, Conlon and Sudakov [3] made the first major breakthrough on this problem, showing that
such a decomposition for general graph with only O(n log log d) cycles and edges always exists, as in Theorem
1.2.

Theorem 1.2. Every graph on n vertices with average degree d can be decomposed into O(n log log d)
cycles and edges.

They also proved that the conjecture holds asymptotically almost surely, or a.a.s. for short, for random
graph and for graphs of linear minimum degree.

Theorem 1.3. There exists a constant c > 0 such that for any probability p ≜ p(n) the random graph
G(n, p) a.a.s. can be decomposed into at most cn cycles and edges.

Theorem 1.4. Every graph G on n vertices with minimum degree cn can be decomposed into at most
O(c−12n) cycles and edges.

In 2022, Bucić and Montgomery improved the previous bound of general graph to O(n log∗ d) [2], as in
Theorem 1.5. The iterated logarithm function log∗ n is the minimum number of times we need to apply the
logarithm function to n until it becomes at most one.

Theorem 1.5. Every graph on n vertices with average degree d can be decomposed into O(n log∗ d) cycles
and edges.
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2 General Graphs with O(n log n) Decompositions

2.1 Proof

Following Theorem 1.1 in [5], Erdős and Gallai greedily removed cycles of longest length O(n) times,
that the graph that remains will be acyclic or have at most half the edges, and got the bound O(n log n),
following from a simple iteration.

Proof. Recall that we need to prove that every graph G on n vertices can be decomposed into O(n log n)
cycles and edges.

Delete the longest cycle of G at each iteration until there is no cycle in G. Let mi (i ≥ 0) be the remaining
edges of G at the i-th iteration. Initially, m0 = E(G). Let li (i ≥ 0) be the length of the longest cycle at
the i-th iteration. Thus, mi+1 = mi − li. By Theorem 1.1, we have mi+1 ≤ (n− 1)li/2.

Consider the process, where the length li decreases strictly to lj <= li/2. The number of deleted cycles
is at most mi

li/2
≤ n− 1. This process can be repeated for log l0 ≤ log n times at most. Thus, the number of

deleted cycles is at most n log n. The remaining graph is disjoint trees and thus have at most n − 1 edges.
In total, G is decomposed with O(n log n) cycles and O(n) edges.

2.2 Proof of Theorem 1.1 (to be done)
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3 General Graphs with O(n log log n) Decompositions

3.1 Proof sketch

Assume that the graph G has average degree d.

1. Delete the longest cycles in G until the cycles remained having length below d/c1, getting G′. In this

stage, it deletes at most dn/2
d/c1

= c1
2 n cycles.

2. Partition edges of G′ and get G′
1, . . . , G

′
k, where |V (G′

i)| ≤ d/c1 + 2,
∑s

i=1 |V (G′
i)| ≤ 3n.

3. Delete around 4|V (G′
i)|2−1/9 log |V (G′

i)| edges in each G′
i. It gets disjoint expanders G′

i1, . . . , G
′
iri

,
where each component has expanding property.

(a) The expansion property is that for all X ⊂ G′
ij with |X| ≤ G′

ij/2, e(X,Xc) ≥ s|X|, where

s = 3|V (G′
i)|8/9.

(b) For each expander G′
ij , it has some robustness property. Specifically, there is a set Uij ⊂ V (G′

ij),

such that for each x, y ∈ V (G′
ij)\Uij , avoiding at most 2

√
|V (G′

ij | vertices and 1
2 |V (G′

ij |4/3 edges

of Uij , x, y is still connected through Uij with length at most |V (G′
ij |2/9. Besides, Uij is not too

large, with |Uij | ≤ 3|V (G′
ij)|8/9.

(c) Using path decomposition theorem, decompose G′
ij\Uij into |V (G′

ij)|/2 paths and cycles.

(d) Using pigeonhole principle, delete at most 2 · |V (G′
ij)|/2 edges from those paths and the remained

paths have vertices sharing at most
√

2 · |V (G′
ij)|/2 endpoints.

(e) With robustness property, connect those paths using U and get (1/2+1/2)|V (G′
ij)| cycles with at

most |V (G′
ij)|+ 3|V (G′

ij)|8/9 · |V (G′
ij)| edges left. Then, sum over i and j to get the total cycles

and remained edges.

4. In this way, the iteration deletes 3n cycles and remains at most 16n2−1/9 log n ≤ O(n2−1/10) edges.
Thus, the average degree decreases from d to d0.9.

3.2 Longest path and its cycle

The longest path P in a graph G has some structures, as the neighborhoods of endvertices in P can only
fall into its internal vertices, which is shown in Lemma 2.6 and Lemma 2.7 in [1] as the following Lemma
3.1 and Lemma 3.2.

Lemma 3.1. Let G be a graph, let P = u . . . v be a longest path in G, and put S := S(P ). Then
NG(S) ⊆ S− ∪ S+.

Proof. Let x ∈ S and y ∈ N(x) be given; we show that y ∈ S− ∪ S ∪ S+. As x ∈ S there is a path
Q = x . . . v derived from P . Then y ∈ V (Q) = V (P ), because Q (like P ) is a longest path; let z denote the
predecessor of y on Q.

Suppose that y /∈ S−∪S ∪S+. Then each of the (one or two) edges e ∈ P at y lies on every path derived
from P (and in particular on Q ), because in any elementary exchange in which e is first deleted, its two
ends (including y ) would have become members of S and of S− ∪ S+, respectively. Hence z ∈ {y−, y+}.
But Q+ xy − yz is obtained from Q by an elementary exchange, which puts z in S and y in S− ∪ S+.
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Lemma 3.2. Let G be a graph, let P = u . . . v be a longest path in G, and put S := S(P ). Then G has a
cycle containing S ∪N(S).

Proof. Let y be the last vertex of P in N(S). Then all the vertices from S ∪N(S) lie on Py, because any
vertex of yP in S would differ from v and hence have its successor on P in N(S). Let x ∈ S be a neighbour
of y in G, and let Q = x . . . v be derived from P . As in the proof of Lemma 3.1, all the edges of yP are still
edges of Q, so yQ = yP . Thus S ∪N(S) ⊆ V (Py) = V (Qy), and Qyx is a cycle in G.

Using Lemma 3.1 and Lemma 3.2, we have the following Pósa-type statement.

Lemma 3.3. If a graph G contains no cycle of length greater than 3t, then there is a subset S of size at
most t such that |NG(S)| ≤ 2|S|.

Proof. Otherwise, for all subset S of size at most t, we have |NG(S)| > 2|S|. Consider the longest path P
in G. Consider the subset S ⊂ V (P ) defined in Lemma 3.1, which has NG(S) ⊂ S− ∪ S+. Assume |S| ≤ t.
As both |S−|, |S+| ≤ |S|, we have |NG(S)| ≤ |S− ∪ S+| ≤ |S−|+ |S−| ≤ 2|S|, which is a contradiction.

Thus, |S| > t. We can pick a subset T ⊂ S, such that |T | = t. Thus, by the assumption, we have
|NG(S)| > |NG(T )| > 2t. By Lemma 3.2, G has a cycle C containing S ∪N(S). Thus |C| ≥ |S ∪N(S)| =
|S|+ |N(S)| > 3t.

3.3 Path decomposition with low endpoint coincidence

Lemma 3.4. Suppose a graph G has a decomposition into h paths. Then G can also be decomposed into
h subpaths of these paths and at most 2h edges so that each vertex is an endpoint of at most

√
2h of the

paths.

Proof. Consider the vertex v, which is the endpoint of t paths Pv, where t >
√
2h. Consider those

vertices NG(v), by pigeonhole principle, there is a vertex u ∈ NG(v) such that u is the endpoint of at most
(2h − t)/t <

√
2h − 1 paths. Delete edge uv in G. Repeat this process until no vertex is the endpoint of

more that
√
2h paths. As each path will be deleted at most two edges, the total deleted number of edges is

at most 2h.

3.4 Questions

Question 3.1. Why Lemma 3.2 in [3] use 2n/s for each Mi? Why Claim in Lemma 3.2 in [3] use 4n/s?

Answer 3.1. First, for each vertex, it is s/2n, then for almost all vertices it is s/2. As the coefficient of
expansion property is s, expanding with s/2 is highly reachable.

Second, it is almost the same.

Question 3.2. Why Lemma 3.2 in [3] use n2/3 for vertices in E in the proof?

Answer 3.2. The proof could be understood in this way. As y0 = y /∈ U and 2
√
n ≤ 2n2/3, we could

assume that in each step, yi has at least 4n2/3 − 2n2/3 = 2n2/3 neighbors not in G\W − E.
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4 General Graphs with O(n log∗ d) Decompositions

4.1 Proof sketch

Assume that the graph G has average degree d.

1. Delete the longest cycles in G until the cycles remained having length below d, getting G′. In this

stage, it deletes at most dn/2
d = 1

2n = O(n) cycles.

2. Let ϵ = 0, s = 2−5. Delete at most 4sn log n = 0 edges from G′ and partition the remaining edges
to get G′

1, . . . , G
′
k, where each G′

i is an (ϵ, s)-expander, i.e. (2−5, 0)-expander, |V (G′
i)| = O(d log4 d),∑k

i=1 |V (G′
i)| ≤ 2n.

3. For eachG′
i, let ϵ = 2−5, s = log273 |V (G′

i)|. Delete at most 4s|V (G′
i)| log |V (G′

i)| = 4|V (G′
i)| log

274 |V (G′
i)|

edges from G′
i and partition the remaining edges to get G′

i1, . . . , G
′
iri

, where each G′
ij is an (ϵ, s)-

expander, i.e. (2−5, log273 |V (G′
i)|)-expander, |V (G′

ij)| = O(d log4 d) and
∑ri

j=1 |V (G′
ij)| ≤ 2|V (G′

i)|.

(a) We can only consider those G′
ij relative large, with |V (G′

ij)| ≥ 212. Otherwise deleting edges of

those expanders with |V (G′
ij)| ≤ 212, instead of utilizing those edges to compose cylces, will only

delete at most
∑ri

j=1 1/2|V (G′
ij)|2 ≤ 211

∑ri
j=1 |V (G′

ij)| ≤ 212|V (G′
i)| edges.

(b) For each expander G′
ij with |V (G′

ij)| ≥ 212, it has some robustness property, which makes it

decomposed into 2|V (G′
ij)| cycles and at most 3 · 29|V (G′

ij)| log
10 |V (G′

ij)| edges.
(c) Specifically, the robustness property is as follows.

i. We can decomposeG′
ij into three edge disjoint (

ϵ
4 ,

√
sϵ

24 log |V (G′
i)|
)-expander, i.e. (2−7,≥ log135 |V (G′

i)|)-
expander, G′

ij1, G
′
ij2, G

′
ij3. Note that V (G′

ijl) = V (G′
ij), for all l ∈ {1, 2, 3}.

ii. Let V ⊂ V (G′
ij) be chosen by including each vertex independently at random with prob-

ability 1
3 . Then, with high probability, there is a subgraph G′′

ijl ⊂ G′
ijl with at most

29|V (G′
ij)| log

10 |V (G′
ij)| edges which is (log7 |V (G′

ij)|, 2)-path connected through V .

iii. We can view G′′
ijl as an edge subset of G′′

ij , with some relative dense edges in V and some
edges in e(v, V ) for each v ∈ V (G′

ij)\V .

(d) With the above robustness property, we can find a partition of V (G′
ij) = Vij1 ∪ Vij2 ∪ Vij3,

such that there is G′′
ijl ⊂ G′

ij which is (log7 |V (G′
ij)|, 2)-path connected through Vijl. Let G′′

ij =
G′

ij −G′′
ij1 −G′′

ij2 −G′′
ij3 and Hijl = G′′

ij [Vij(l+1)] + e(Vij(l+1), Vij(l+2)), where + is in the sense of
appropriately modulo 3.

(e) Decompose each Hijl with a collection of paths Pijl with the property that no vertex is an
endvertex of more than two of the paths in Pijl, which also means that |Pijl| ≤ |V (Hijl)|. As
Vijl not contained in V (Hijl), we can use G′′

ijl to connect those paths, with at most |V (Hijl)| ≤
|V (G′

ij)|− |V (G′
ijl)| cycles and 29|V (G′

ij)| log
10 |V (G′

ij)| edges left. Thus, in total we are left with

2|V (G′
ij)| cycles and 3 · 29|V (G′

ij)| log
10 |V (G′

ij)| edges.

4. In this way, the iteration deletes at most 0.5n+
∑

i

∑
j 3|V (G′

ij)| ≤ 0.5n+
∑

i 3·2|V (G′
i)| ≤ 0.5n+12n =

12.5n cycles and remains
∑

i(4|V (G′
i)| log

274 |V (G′
i)| + 212|V (G′

i)| +
∑

j 2
11|V (G′

ij)| log
10 |V (G′

ij)|) ≤∑
i 2

14|V (G′
i)| log

274 |V (G′
i)| = O(

∑
i |V (G′

i)| log
274 d) = O(n log274 d) edges. Thus, the average degree

decreases from d to log274 d with O(n) cycles deleted. Repeat this iteration until no cycles exists and
the number of iteration is O(log∗ d). Thus, there are O(n log∗ d) cycles deleted in total and O(n) edges
left.
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4.2 Questions

Question 4.1. Why find a partition of V (G′
ij) = Vij1 ∪ Vij2 ∪ Vij3?

Answer 4.1. Three partitions is a must.

1. If we only have one partition of V (G′
ij), then let the subgraph G′

ij1 ⊂ G′
ij path connected through

V (G′
ij). It is problematic to complete the decomposed paths set Pij in G′

ij − G′
ij1 to cycle by using

paths P ′
ij in G′

ij1, as both paths Pij and P ′
ij use the same vertex set V (G′

ij).

2. If we only have two partitions of V (G′
ij), then let the subgraphs G′

ij1, G
′
ij2 ⊂ G′

ij path connected through
Vij1, Vij2 respectively, where V (G′

ij) = Vij1 ∪ Vij2. For G′′
ij = G′

ij −G′
ij1 −G′

ij2, it is hard to manage
the edges e(Vij1, Vij2), as those edges have endvertex in Vij1 and Vij2.
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