Erdős-Gallai Conjecture

Juncheng Wan, jorgenwan@gamil.com

This is a note of graph decomposition of cycles and edges.

Pre-requisites of this note include a knowledge of the basic concepts of linear algebra, probability theory.

Contents

1	Intr	roduction	3
2	General Graphs with $O(n \log n)$ Decompositions		4
	2.1	Proof	4
	2.2	Proof of Theorem 1.1 (to be done)	4
3	Ger	neral Graphs with $O(n \log \log n)$ Decompositions	5
	3.1	Proof sketch	5
	3.2	Longest path and its cycle	5
	3.3	Path decomposition with low endpoint coincidence	6
	3.4	Questions	6
4	General Graphs with $O(n \log^* d)$ Decompositions		7
	4.1	Proof sketch	7
	4.2	Questions	8

1 Introduction

In 1966, Erdős and Gallai made the following conjecture [4]:

Conjecture 1.1. Any n-vertex graph can be decomposed into O(n) cycles and edges.

Following Theorem 1.1 in [5], Erdős and Gallai greedily removed cycles of longest length O(n) and got the bound $O(n \log n)$, following from a simple iteration.

Theorem 1.1. Every graph with n nodes and more than (n-1)l/2 edges $(l \ge 2)$ contains a circle with more than l edges.

In 2014, Fox, Conlon and Sudakov [3] made the first major breakthrough on this problem, showing that such a decomposition for general graph with only $O(n \log \log d)$ cycles and edges always exists, as in Theorem 1.2.

Theorem 1.2. Every graph on n vertices with average degree d can be decomposed into $O(n \log \log d)$ cycles and edges.

They also proved that the conjecture holds asymptotically almost surely, or a.a.s. for short, for random graph and for graphs of linear minimum degree.

Theorem 1.3. There exists a constant c > 0 such that for any probability $p \triangleq p(n)$ the random graph G(n,p) a.a.s. can be decomposed into at most cn cycles and edges.

Theorem 1.4. Every graph G on n vertices with minimum degree cn can be decomposed into at most $O(c^{-12}n)$ cycles and edges.

In 2022, Bucić and Montgomery improved the previous bound of general graph to $O(n \log^* d)$ [2], as in Theorem 1.5. The iterated logarithm function $\log^* n$ is the minimum number of times we need to apply the logarithm function to n until it becomes at most one.

Theorem 1.5. Every graph on n vertices with average degree d can be decomposed into $O(n \log^* d)$ cycles and edges.

2 General Graphs with $O(n \log n)$ Decompositions

2.1 Proof

Following Theorem 1.1 in [5], Erdős and Gallai greedily removed cycles of longest length O(n) times, that the graph that remains will be acyclic or have at most half the edges, and got the bound $O(n \log n)$, following from a simple iteration.

Proof. Recall that we need to prove that every graph G on n vertices can be decomposed into $O(n \log n)$ cycles and edges.

Delete the longest cycle of G at each iteration until there is no cycle in G. Let m_i $(i \ge 0)$ be the remaining edges of G at the i-th iteration. Initially, $m_0 = E(G)$. Let l_i $(i \ge 0)$ be the length of the longest cycle at the i-th iteration. Thus, $m_{i+1} = m_i - l_i$. By Theorem 1.1, we have $m_{i+1} \le (n-1)l_i/2$.

Consider the process, where the length l_i decreases strictly to $l_j \le l_i/2$. The number of deleted cycles is at most $\frac{m_i}{l_i/2} \le n-1$. This process can be repeated for $\log l_0 \le \log n$ times at most. Thus, the number of deleted cycles is at most $n \log n$. The remaining graph is disjoint trees and thus have at most n-1 edges. In total, G is decomposed with $O(n \log n)$ cycles and O(n) edges.

2.2 Proof of Theorem 1.1 (to be done)

3 General Graphs with $O(n \log \log n)$ Decompositions

3.1 Proof sketch

Assume that the graph G has average degree d.

- 1. Delete the longest cycles in G until the cycles remained having length below d/c_1 , getting G'. In this stage, it deletes at most $\frac{dn/2}{d/c_1} = \frac{c_1}{2}n$ cycles.
- 2. Partition edges of G' and get G'_1, \ldots, G'_k , where $|V(G'_i)| \leq d/c_1 + 2$, $\sum_{i=1}^s |V(G'_i)| \leq 3n$.
- 3. Delete around $4|V(G_i')|^{2-1/9}\log|V(G_i')|$ edges in each G_i' . It gets disjoint expanders G_{i1},\ldots,G_{ir_i}' , where each component has expanding property.
 - (a) The expansion property is that for all $X \subset G'_{ij}$ with $|X| \leq G'_{ij}/2$, $e(X, X^c) \geq s|X|$, where $s = 3|V(G'_i)|^{8/9}$.
 - (b) For each expander G'_{ij} , it has some robustness property. Specifically, there is a set $U_{ij} \subset V(G'_{ij})$, such that for each $x, y \in V(G'_{ij}) \setminus U_{ij}$, avoiding at most $2\sqrt{|V(G'_{ij})|}$ vertices and $\frac{1}{2}|V(G'_{ij})|^{4/3}$ edges of U_{ij} , x, y is still connected through U_{ij} with length at most $|V(G'_{ij})|^{2/9}$. Besides, U_{ij} is not too large, with $|U_{ij}| \leq 3|V(G'_{ij})|^{8/9}$.
 - (c) Using path decomposition theorem, decompose $G'_{ij}\backslash U_{ij}$ into $|V(G'_{ij})|/2$ paths and cycles.
 - (d) Using pigeonhole principle, delete at most $2 \cdot |V(G'_{ij})|/2$ edges from those paths and the remained paths have vertices sharing at most $\sqrt{2 \cdot |V(G'_{ij})|/2}$ endpoints.
 - (e) With robustness property, connect those paths using U and get $(1/2+1/2)|V(G'_{ij})|$ cycles with at most $|V(G'_{ij})| + 3|V(G'_{ij})|^{8/9} \cdot |V(G'_{ij})|$ edges left. Then, sum over i and j to get the total cycles and remained edges.
- 4. In this way, the iteration deletes 3n cycles and remains at most $16n^{2-1/9}\log n \leq O(n^{2-1/10})$ edges. Thus, the average degree decreases from d to $d^{0.9}$.

3.2 Longest path and its cycle

The longest path P in a graph G has some structures, as the neighborhoods of endvertices in P can only fall into its internal vertices, which is shown in Lemma 2.6 and Lemma 2.7 in [1] as the following Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Let G be a graph, let $P = u \dots v$ be a longest path in G, and put S := S(P). Then $N_G(S) \subseteq S^- \cup S^+$.

Proof. Let $x \in S$ and $y \in N(x)$ be given; we show that $y \in S^- \cup S \cup S^+$. As $x \in S$ there is a path $Q = x \dots v$ derived from P. Then $y \in V(Q) = V(P)$, because Q (like P) is a longest path; let z denote the predecessor of y on Q.

Suppose that $y \notin S^- \cup S \cup S^+$. Then each of the (one or two) edges $e \in P$ at y lies on every path derived from P (and in particular on Q), because in any elementary exchange in which e is first deleted, its two ends (including y) would have become members of S and of $S^- \cup S^+$, respectively. Hence $z \in \{y^-, y^+\}$. But Q + xy - yz is obtained from Q by an elementary exchange, which puts z in S and y in $S^- \cup S^+$. \square

Lemma 3.2. Let G be a graph, let $P = u \dots v$ be a longest path in G, and put S := S(P). Then G has a cycle containing $S \cup N(S)$.

Proof. Let y be the last vertex of P in N(S). Then all the vertices from $S \cup N(S)$ lie on Py, because any vertex of yP in S would differ from v and hence have its successor on P in N(S). Let $x \in S$ be a neighbour of y in G, and let $Q = x \dots v$ be derived from P. As in the proof of Lemma 3.1, all the edges of yP are still edges of Q, so yQ = yP. Thus $S \cup N(S) \subseteq V(Py) = V(Qy)$, and Qyx is a cycle in G.

Using Lemma 3.1 and Lemma 3.2, we have the following Pósa-type statement.

Lemma 3.3. If a graph G contains no cycle of length greater than 3t, then there is a subset S of size at most t such that $|N_G(S)| \leq 2|S|$.

Proof. Otherwise, for all subset S of size at most t, we have $|N_G(S)| > 2|S|$. Consider the longest path P in G. Consider the subset $S \subset V(P)$ defined in Lemma 3.1, which has $N_G(S) \subset S^- \cup S^+$. Assume $|S| \leq t$. As both $|S^-|, |S^+| \leq |S|$, we have $|N_G(S)| \leq |S^- \cup S^+| \leq |S^-| + |S^-| \leq 2|S|$, which is a contradiction.

Thus, |S| > t. We can pick a subset $T \subset S$, such that |T| = t. Thus, by the assumption, we have $|N_G(S)| > |N_G(T)| > 2t$. By Lemma 3.2, G has a cycle C containing $S \cup N(S)$. Thus $|C| \ge |S \cup N(S)| = |S| + |N(S)| > 3t$.

3.3 Path decomposition with low endpoint coincidence

Lemma 3.4. Suppose a graph G has a decomposition into h paths. Then G can also be decomposed into h subpaths of these paths and at most 2h edges so that each vertex is an endpoint of at most $\sqrt{2h}$ of the paths.

Proof. Consider the vertex v, which is the endpoint of t paths \mathcal{P}_v , where $t > \sqrt{2h}$. Consider those vertices $N_G(v)$, by pigeonhole principle, there is a vertex $u \in N_G(v)$ such that u is the endpoint of at most $(2h-t)/t < \sqrt{2h} - 1$ paths. Delete edge uv in G. Repeat this process until no vertex is the endpoint of more that $\sqrt{2h}$ paths. As each path will be deleted at most two edges, the total deleted number of edges is at most 2h.

3.4 Questions

Question 3.1. Why Lemma 3.2 in [3] use 2n/s for each M_i ? Why Claim in Lemma 3.2 in [3] use 4n/s?

Answer 3.1. First, for each vertex, it is s/2n, then for almost all vertices it is s/2. As the coefficient of expansion property is s, expanding with s/2 is highly reachable.

Second, it is almost the same.

Question 3.2. Why Lemma 3.2 in [3] use $n^{2/3}$ for vertices in E in the proof?

Answer 3.2. The proof could be understood in this way. As $y_0 = y \notin U$ and $2\sqrt{n} \le 2n^{2/3}$, we could assume that in each step, y_i has at least $4n^{2/3} - 2n^{2/3} = 2n^{2/3}$ neighbors not in $G \setminus W - E$.

4 General Graphs with $O(n \log^* d)$ Decompositions

4.1 Proof sketch

Assume that the graph G has average degree d.

- 1. Delete the longest cycles in G until the cycles remained having length below d, getting G'. In this stage, it deletes at most $\frac{dn/2}{d} = \frac{1}{2}n = O(n)$ cycles.
- 2. Let $\epsilon = 0, s = 2^{-5}$. Delete at most $4sn \log n = 0$ edges from G' and partition the remaining edges to get G'_1, \ldots, G'_k , where each G'_i is an (ϵ, s) -expander, i.e. $(2^{-5}, 0)$ -expander, $|V(G'_i)| = O(d \log^4 d)$, $\sum_{i=1}^k |V(G'_i)| \le 2n$.
- 3. For each G_i' , let $\epsilon = 2^{-5}$, $s = \log^{273} |V(G_i')|$. Delete at most $4s|V(G_i')| \log |V(G_i')| = 4|V(G_i')| \log^{274} |V(G_i')|$ edges from G_i' and partition the remaining edges to get $G_{i1}', \ldots, G_{ir_i}'$, where each G_{ij}' is an (ϵ, s) -expander, i.e. $(2^{-5}, \log^{273} |V(G_i')|)$ -expander, $|V(G_{ij}')| = O(d \log^4 d)$ and $\sum_{j=1}^{r_i} |V(G_{ij}')| \le 2|V(G_i')|$.
 - (a) We can only consider those G'_{ij} relative large, with $|V(G'_{ij})| \geq 2^{12}$. Otherwise deleting edges of those expanders with $|V(G'_{ij})| \leq 2^{12}$, instead of utilizing those edges to compose cycles, will only delete at most $\sum_{j=1}^{r_i} 1/2|V(G'_{ij})|^2 \leq 2^{11}\sum_{j=1}^{r_i} |V(G'_{ij})| \leq 2^{12}|V(G'_{ij})|$ edges.
 - (b) For each expander G'_{ij} with $|V(G'_{ij})| \geq 2^{12}$, it has some robustness property, which makes it decomposed into $2|V(G'_{ij})|$ cycles and at most $3 \cdot 2^9 |V(G'_{ij})| \log^{10} |V(G'_{ij})|$ edges.
 - (c) Specifically, the robustness property is as follows.
 - i. We can decompose G'_{ij} into three edge disjoint $(\frac{\epsilon}{4}, \frac{\sqrt{s\epsilon}}{24 \log |V(G'_i)|})$ -expander, i.e. $(2^{-7}, \geq \log^{135} |V(G'_i)|)$ -expander, $G'_{ij1}, G'_{ij2}, G'_{ij3}$. Note that $V(G'_{ijl}) = V(G'_{ij})$, for all $l \in \{1, 2, 3\}$.
 - ii. Let $V \subset V(G'_{ij})$ be chosen by including each vertex independently at random with probability $\frac{1}{3}$. Then, with high probability, there is a subgraph $G''_{ijl} \subset G'_{ijl}$ with at most $2^9|V(G'_{ij})|\log^{10}|V(G'_{ij})|$ edges which is $(\log^7|V(G'_{ij})|,2)$ -path connected through V.
 - iii. We can view G''_{ijl} as an edge subset of G''_{ij} , with some relative dense edges in V and some edges in e(v, V) for each $v \in V(G'_{ij}) \setminus V$.
 - (d) With the above robustness property, we can find a partition of $V(G'_{ij}) = V_{ij1} \cup V_{ij2} \cup V_{ij3}$, such that there is $G''_{ijl} \subset G'_{ij}$ which is $(\log^7 |V(G'_{ij})|, 2)$ -path connected through V_{ijl} . Let $G''_{ij} = G''_{ij} G''_{ij1} G''_{ij2} G''_{ij3}$ and $H_{ijl} = G''_{ij}[V_{ij(l+1)}] + e(V_{ij(l+1)}, V_{ij(l+2)})$, where + is in the sense of appropriately modulo 3.
 - (e) Decompose each H_{ijl} with a collection of paths \mathcal{P}_{ijl} with the property that no vertex is an endvertex of more than two of the paths in \mathcal{P}_{ijl} , which also means that $|\mathcal{P}_{ijl}| \leq |V(H_{ijl})|$. As V_{ijl} not contained in $V(H_{ijl})$, we can use G''_{ijl} to connect those paths, with at most $|V(H_{ijl})| \leq |V(G'_{ij})| |V(G'_{ijl})|$ cycles and $2^9|V(G'_{ij})|\log^{10}|V(G'_{ij})|$ edges left. Thus, in total we are left with $2|V(G'_{ij})|$ cycles and $3 \cdot 2^9|V(G'_{ij})|\log^{10}|V(G'_{ij})|$ edges.
- 4. In this way, the iteration deletes at most $0.5n + \sum_i \sum_j 3|V(G'_{ij})| \le 0.5n + \sum_i 3 \cdot 2|V(G'_i)| \le 0.5n + 12n = 12.5n$ cycles and remains $\sum_i (4|V(G'_i)|\log^{274}|V(G'_i)| + 2^{12}|V(G'_i)| + \sum_j 2^{11}|V(G'_{ij})|\log^{10}|V(G'_{ij})|) \le \sum_i 2^{14}|V(G'_i)|\log^{274}|V(G'_i)| = O(\sum_i |V(G'_i)|\log^{274}d) = O(n\log^{274}d)$ edges. Thus, the average degree decreases from d to $\log^{274}d$ with O(n) cycles deleted. Repeat this iteration until no cycles exists and the number of iteration is $O(\log^*d)$. Thus, there are $O(n\log^*d)$ cycles deleted in total and O(n) edges left.

4.2 Questions

Question 4.1. Why find a partition of $V(G'_{ij}) = V_{ij1} \cup V_{ij2} \cup V_{ij3}$?

Answer 4.1. Three partitions is a must.

- 1. If we only have one partition of $V(G'_{ij})$, then let the subgraph $G'_{ij1} \subset G'_{ij}$ path connected through $V(G'_{ij})$. It is problematic to complete the decomposed paths set \mathcal{P}_{ij} in $G'_{ij} G'_{ij1}$ to cycle by using paths \mathcal{P}'_{ij} in G'_{ij1} , as both paths \mathcal{P}_{ij} and \mathcal{P}'_{ij} use the same vertex set $V(G'_{ij})$.
- 2. If we only have two partitions of $V(G'_{ij})$, then let the subgraphs $G'_{ij1}, G'_{ij2} \subset G'_{ij}$ path connected through V_{ij1}, V_{ij2} respectively, where $V(G'_{ij}) = V_{ij1} \cup V_{ij2}$. For $G''_{ij} = G'_{ij} G'_{ij1} G'_{ij2}$, it is hard to manage the edges $e(V_{ij1}, V_{ij2})$, as those edges have endvertex in V_{ij1} and V_{ij2} .

References

- [1] Stephan Brandt et al. "Global connectivity and expansion: long cycles and factors in f-connected graphs". In: Combinatorica 26 (2006), pp. 17–36.
- [2] Matija Bucić and Richard Montgomery. "Towards the Erdős-Gallai cycle decomposition conjecture". In: *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*. 2023, pp. 839–852.
- [3] David Conlon, Jacob Fox, and Benny Sudakov. "Cycle packing". In: Random Structures & Algorithms 45.4 (2014), pp. 608–626.
- [4] Paul Erdös, Adolph W Goodman, and Louis Pósa. "The representation of a graph by set intersections". In: Canadian Journal of Mathematics 18 (1966), pp. 106–112.
- [5] T Gallai et al. "On maximal paths and circuits of graphs". In: Acta Math. Acad. Sci. Hungar 10 (1959), pp. 337–356.